# HITACHI <br> Inspire the Nex́t 

## SJ7002Series Inverter Instruction Manual

- Three-phase Input 200 V Class
- Three-phase Input 400 V Class
U.S. Version Models

European Version Models


Manual Number: NB206XA
October 2009

After reading this manual, keep it handy for future reference.

Hitachi Industrial Equipment Systems Co., Ltd.

## Safety Messages

For the best results with the SJ7002 Series inverter, carefully read this manual and all of the warning labels attached to the inverter before installing and operating it, and follow the instructions exactly. Keep this manual handy for quick reference.

Definitions and Symbols

A safety instruction (message) includes a hazard alert symbol and a signal word, WARNING or CAUTION. Each signal word has the following meaning:


This symbol indicates HIGH VOLTAGE. It calls your attention to items or operations that could be dangerous to you and other persons operation this equipment. Read the message and follow the instructions carefully.


This symbol is the "Safety Alert Symbol." It occurs with either of two signal words: CAUTION or WARNING, as described below.


WARNING: Indicates a potentially hazardous situation that, if not avoided, can result in serious injury or death.


CAUTION: Indicates a potentially hazardous situation that, if not avoided, can result in minor to moderate injury, or serious damage to the product. The situation described in the CAUTION may, if not avoided, lead to serious results. Important safety measures are described in CAUTION (as well as WARNING), so be sure to observe them.

STEP: A step is one of a series of action steps required to accomplish a goal. The number of the step will be contained in the step symbol.


NOTE: Notes indicate an area or subject of special merit, emphasizing either the product's capabilities or common errors in operation or maintenance.


TIP: Tips give a special instruction that can save time or provide other benefits while installing or using the product. The tip calls attention to an idea that may not be obvious to first-time users of the product.

## Hazardous High Voltage



HIGH VOLTAGE: Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing drives and electronic controllers, there may be exposed components with housings or protrusions at or above line potential. Extreme care should be taken to protect against shock.
Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case an emergency occurs. Disconnect power before checking controllers or performing maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on electronic controllers or rotating machinery.

## General Precautions - Read These First!



WARNING: This equipment should be installed, adjusted, and serviced by qualified electrical maintenance personnel familiar with the construction and operation of the equipment and the hazards involved. Failure to observe this precaution could result in bodily injury.

WARNING: The user is responsible for ensuring that all driven machinery, drive train mechanism not supplied by Hitachi Industrial Equipment Systems Co., Ltd., and process line material are capable of safe operation at an applied frequency of $150 \%$ of the maximum selected frequency range to the AC motor. Failure to do so can result in destruction of equipment and injury to personnel should a single-point failure occur.

WARNING: For equipment protection, install a ground leakage type breaker with a fast response circuit capable of handling large currents. The ground fault protection circuit is not designed to protect against personal injury.

HIGH VOLTAGE: HAZARD OF ELECTRICAL SHOCK. DISCONNECT INCOMING POWER BEFORE WORKING ON THIS CONTROL

WARNING: Wait at least ten (10) minutes after turning OFF the input power supply before performing maintenance or an inspection. Otherwise, there is the danger of electric shock.

CAUTION: These instructions should be read and clearly understood before working on SJ7002 series equipment.

CAUTION: Proper grounds, disconnecting devices and other safety devices and their location are the responsibility of the user and are not provided by Hitachi Industrial Equipment Systems Co., Ltd.

CAUTION: Be sure to connect a motor thermal disconnect switch or overload device to the SJ7002 series controller to assure that the inverter will shut down in the event of an overload or an overheated motor.

HIGH VOLTAGE: Dangerous voltage exists until power light is OFF. Wait at least 10 minutes after input power is disconnected before performing maintenance.

CAUTION: This equipment has high leakage current and must be permanently (fixed) hardwired to earth ground via two independent cables.

WARNING: Rotating shafts and above-ground electrical potentials can be hazardous. Therefore, it is strongly recommended that all electrical work conform to the National Electrical Codes and local regulations. Installation, alignment and maintenance should be performed only by qualified personnel.
Factory-recommended test procedures included in the instruction manual should be followed. Always disconnect electrical power before working on the unit.

## CAUTION:

a) Motor must be connected to protective ground via low resistive path (<0.1 $\Omega$ )
b) Any motor used must be of a suitable rating.
c) Motors may have hazardous moving parts. In this event suitable protection must be provided.


CAUTION: A three-pole disconnection device must be fitted to the incoming main power supply close to the inverter. Additionally, a protection device meeting IEC947-1/IEC947-3 must be fitted at this point (protection device data shown in "Determining Wire and Fuse Sizes" on page 2-18).

NOTE: The above instructions, together with any other requirements are highlighted in this manual, and must be followed for continued LVD (European Low Voltage Directive) compliance.

## Index to Warnings and Cautions in This Manual

Installation—Cautions for Mounting Procedures



CAUTION: Be sure to install the unit on flame-resistant material such as a steel plate. Otherwise, there is the danger of fire.


CAUTION: Be sure not to place any flammable materials near the inverter. Otherwise, there is the danger of fire.


CAUTION: Be sure not to let the foreign matter enter vent openings in the inverter housing, such as wire clippings, spatter from welding, metal shavings, dust, etc. Otherwise, there is the danger of fire.


CAUTION: Be sure to install the inverter in a place that can bear the weight according to the specifications in the text (Chapter 1, Specifications Tables). Otherwise, it may fall and cause injury to personnel.


CAUTION: Be sure to install the unit on a perpendicular wall that is not subject to vibration. Otherwise, it may fall and cause injury to personnel.

CAUTION: Be sure not to install or operate an inverter that is damaged or has missing parts. Otherwise, it may cause injury to personnel.

CAUTION: Be sure to install the inverter in a well-ventilated room that does not have direct exposure to sunlight, a tendency for high temperature, high humidity or dew condensation, high levels of dust, corrosive gas, explosive gas, inflammable gas, grinding-fluid mist, salt air, etc. Otherwise, there is the danger of fire.


CAUTION: Be sure to maintain the specified clearance area around the inverter and to provide adequate ventilation. Otherwise, the inverter may overheat and cause equipment damage or fire.

## Wiring—Warnings for Electrical Practices and Wire Specifications



WARNING: Use $75^{\circ} \mathrm{C} \mathrm{Cu}$ wire only or equivalent.

WARNING: Open Type Equipment. For models SJ700-750H to SJ7004000H.

WARNING: A Class 2 circuit wired with Class 1 wire or equivalent.


WARNING: Suitable for use on a circuit capable of delivering not more $\qquad$ than $100,000 \mathrm{rms}$ symmetrical amperes, 240 V maximum. For models with suffix L.

WARNING: Suitable for use on a circuit capable of delivering not more
than $100,000 \mathrm{rms}$ symmetrical amperes, 480 V maximum. For models with 2-17
 suffix H .


HIGH VOLTAGE: Be sure to ground the unit. Otherwise, there is a danger
of electric shock and/or fire.

HIGH VOLTAGE: Wiring work shall be carried out only by qualified $\qquad$ personnel. Otherwise, there is a danger of electric shock and/or fire.

HIGH VOLTAGE: Implement wiring after checking that the power supply 2-17 is OFF. Otherwise, you may incur electric shock and/or fire.

HIGH VOLTAGE: Do not connect wiring to an inverter or operate an inverter that is not mounted according the instructions given in this manual. Otherwise, there is a danger of electric shock and/or injury to personnel.

## Wiring-Cautions for Electrical Practices



CAUTION: Be sure that the input voltage matches the inverter specifications: • Three phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \bullet$ Three phase 380 to $480 \mathrm{~V} 50 /$ 60 Hz

CAUTION: Be sure not to power a three-phase-only inverter with single
phase power. Otherwise, there is the possibility of damage to the inverter and the danger of fire.

CAUTION: Be sure not to connect an AC power supply to the output termi-2-25 nals. Otherwise, there is the possibility of damage to the inverter and the danger of injury and/or fire.


NOTE:
L1, L2, L3: Three-phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Three-phase 380 to $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

CAUTION: Fasten the screws with the specified fastening torque in the table below. Check for any loosening of screws. Otherwise, there is the danger of fire.


CAUTION: Remarks for using ground fault interrupter breakers in the main power supply: Adjustable frequency inverters with CE-filters (RFI-filter) and shielded (screened) motor cables have a higher leakage current toward Earth GND. Especially at the moment of switching ON this can cause an inadvertent trip of ground fault interrupter breakers. Because of the rectifier on the input side of the inverter there is the possibility to stall the switch-off function through small amounts of DC current. Please observe the following: • Use only short time-invariant and pulse current-sensitive ground fault interrupter breakers with higher trigger current. - Other components should be secured with separate ground fault interrupter breakers. $\cdot$ Ground fault interrupter breakers in the power input wiring of an inverter are not an absolute protection against electric shock.


CAUTION: Be sure to install a fuse in each phase of the main power supply to the inverter. Otherwise, there is the danger of fire.


CAUTION: For motor leads, ground fault interrupter breakers and electromagnetic contactors, be sure to size these components properly (each must have the capacity for rated current and voltage). Otherwise, there is the danger of fire.


CAUTION: Failure to remove all vent opening covers before electrical operation may result in damage to the inverter.

## Powerup Test Caution Messages



CAUTION: The heat sink fins will have a high temperature. Be careful not to touch them. Otherwise, there is the danger of getting burned.


CAUTION: The operation of the inverter can be easily changed from low speed to high speed. Be sure to check the capability and limitations of the motor and machine before operating the inverter. Otherwise, there is the danger of injury.


CAUTION: If you operate a motor at a frequency higher than the inverter standard default setting $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$, be sure to check the motor and machine specifications with the respective manufacturer. Only operate the motor at elevated frequencies after getting their approval. Otherwise, there is the danger of equipment damage and/or injury to personnel.


CAUTION: Check the following before and during the powerup test. Otherwise, there is the danger of equipment damage. $\bullet$ Is the shorting bar between the $[\mathrm{P}]$ and $[\mathrm{PD}]$ terminals installed? DO NOT power or operate the inverter if the jumper is removed. • Is the direction of the motor rotation correct? • Did the inverter trip during acceleration or deceleration? - Were the rpm and frequency meter readings as expected? • Were there any abnormal motor vibrations or noise?

## Warnings for Operations and Monitoring



WARNING: Be sure to turn ON the input power supply only after closing the front case. While the inverter is energized, be sure not to open the front case. Otherwise, there is the danger of electric shock.

WARNING: Be sure not to operate electrical equipment with wet hands.
Otherwise, there is the danger of electric shock.

WARNING: While the inverter is energized, be sure not to touch the inverter terminals even when the motor is stopped. Otherwise, there is the danger of electric shock.

WARNING: If the Retry Mode is selected, the motor may suddenly restart after a trip stop. Be sure to stop the inverter before approaching the machine (be sure to design the machine so that safety for personnel is secure even if it restarts.) Otherwise, it may cause injury to personnel.

WARNING: If the power supply is cut OFF for a short period of time, the inverter may restart operation after the power supply recovers if the Run command is active. If a restart may pose danger to personnel, so be sure to use a lock-out circuit so that it will not restart after power recovery. Otherwise, it may cause injury to personnel.

WARNING: The Stop Key is effective only when the Stop function is enabled. Be sure to enable the Stop Key separately from the emergency stop. Otherwise, it may cause injury to personnel.

WARNING: During a trip event, if the alarm reset is applied and the Run command is present, the inverter will automatically restart. Be sure to apply the alarm reset only after verifying the Run command is OFF. Otherwise, it may cause injury to personnel.

WARNING: Be sure not to touch the inside of the energized inverter or to put any conductive object into it. Otherwise, there is a danger of electric shock and/or fire.

WARNING: If power is turned ON when the Run command is already active, the motor will automatically start and injury may result. Before turning ON the power, confirm that the RUN command is not present.

WARNING: When the Stop key function is disabled, pressing the Stop key does not stop the inverter, nor will it reset a trip alarm.

WARNING: Be sure to provide a separate, hard-wired emergency stop switch when the application warrants it.

WARNING: If the power is turned ON and the Run command is already active, the motor starts rotation and is dangerous! Before turning power ON, confirm that the external Run command is not active.

WARNING: After the Reset command is given and the alarm reset occurs, the motor will restart suddenly if the Run command is already active. Be sure to set the alarm reset after verifying that the Run command is OFF to prevent injury to personnel.


WARNING: You may need to disconnect the load from the motor before $\qquad$ performing auto-tuning. The inverter runs the motor forward and backward for several seconds without regard to load movement limits.

## Cautions for Operations and Monitoring



CAUTION: The heat sink fins will have a high temperature. Be careful not $\qquad$ to touch them. Otherwise, there is the danger of getting burned.


CAUTION: The operation of the inverter can be easily changed from low speed to high speed. Be sure check the capability and limitations of the motor and machine before operating the inverter. Otherwise, it may cause injury to personnel.


CAUTION: If you operate a motor at a frequency higher than the inverter standard default setting $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$, be sure to check the motor and machine specifications with the respective manufacturer. Only operate the motor at elevated frequencies after getting their approval. Otherwise, there is the danger of equipment damage.


CAUTION: It is possible to damage the inverter or other devices if your application exceeds the maximum current or voltage characteristics of a connection point.

CAUTION: Be careful not to turn PID Clear ON and reset the integrator sum when the inverter is in Run Mode (output to motor is ON). Otherwise, this could cause the motor to decelerate rapidly, resulting in a trip.

CAUTION: When the motor runs at lower speeds, the cooling effect of the motor's internal fan decreases.


CAUTION: If the inverter capacity is more than twice the capacity of the motor in use, the inverter may not achieve its full performance specifications.

## Warnings and Cautions for Troubleshooting and Maintenance



WARNING: Wait at least ten (10) minutes after turning OFF the input $\qquad$
power supply before performing maintenance or an inspection. Otherwise, there is the danger of electric shock.


WARNING: Make sure that only qualified personnel will perform mainte- $\qquad$ nance, inspection, and part replacement. Before starting to work, remove any metallic objects from your person (wristwatch, bracelet, etc.). Be sure to use tools with insulated handles. Otherwise, there is a danger of electric shock and/or injury to personnel.


WARNING: Never remove connectors by pulling on its wire leads (wires for cooling fan and logic P.C. board). Otherwise, there is danger of fire due to wire breakage and/or injury to personnel.


CAUTION: Do not connect the megger to any control circuit terminals such as intelligent I/O, analog terminals, etc. Doing so could cause damage to the inverter.


CAUTION: Never test the withstand voltage (HIPOT) on the inverter. The
$\qquad$6-2
$\qquad$ inverter has a surge protector between the main circuit terminals above and the chassis ground.

WARNING: The screws that retain the capacitor bank assembly are part of $\qquad$ the electrical circuit of the high-voltage internal DC bus. Be sure that all power has been disconnected from the inverter, and that you have waited at least 10 minutes before accessing the terminals or screws. Be sure the charge lamp is extinguished. Otherwise, there is the danger of electrocution to personnel.


CAUTION: Do not operate the inverter unless you have replaced the two screws that connect the capacitor bank assembly to the internal DC bus. Otherwise, damage to the inverter may occur.

HIGH VOLTAGE: Be careful not to touch wiring or connector terminals 6-26
when working with the inverters and taking measurements. Be sure to place the measurement circuitry above in an insulated housing before using them.

## General Warnings and Cautions



WARNING: Never modify the unit. Otherwise, there is a danger of electric shock and/or injury.

CAUTION: Withstand voltage tests and insulation resistance tests (HIPOT) are executed before the units are shipped, so there is no need to conduct these tests before operation.

CAUTION: Do not attach or remove wiring or connectors when power is applied. Also, do not check signals during operation.

CAUTION: Do not stop operation by switching OFF electromagnetic contactors on the primary or secondary sides of the inverter.


When there has been a sudden power failure while a Run command is active, then the unit may restart operation automatically after the power failure has ended. If there is a possibility that such an occurrence may harm humans, then install an electromagnetic contactor on the power supply side, so that the circuit does not allow automatic restarting after the power supply recovers. If an optional remote operator is used and the retry function has been selected, this will also allow automatic restarting when a Run command is active. So, please be careful.

CAUTION: Be sure to connect the grounding terminal to earth ground.


CAUTION: Do not insert leading power factor capacitors or surge absorbers between the output terminals of the inverter and motor.


CAUTION: When inspecting the unit, be sure to wait 10 minutes after tuning OFF the power supply before opening the cover.

## CAUTION: SUPPRESSION FOR NOISE INTERFERENCE FROM INVERTER

The inverter uses many semiconductor switching elements such as transistors and IGBTs. Thus, a radio receiver or measuring instrument located near the inverter is susceptible to noise interference.
To protect the instruments from erroneous operation due to noise interference, they should be used well away from the inverter. It is also effective to shield the whole inverter structure. The addition of an EMI filter on the input side of the inverter also reduces the effect of noise from the commercial power line on external devices.
Note that the external dispersion of noise from the power line can be minimized by connecting an EMI filter on the primary side of inverter.

$\qquad$


General Caution


CAUTION: MOTOR TERMINAL VOLTAGE SURGE SUPPRESSION FILTER (For 400 V CLASS Inverters)
In a system using an inverter with the voltage control PWM system, a voltage surge caused by the cable constants such as the cable length (especially when the distance between the motor and inverter is 10 m or more) and cabling method may occur at the motor terminals. A dedicated filter of the 400 V class for suppressing this voltage surge is available. Be sure to install a filter in this situation. (See "LCR filter" on page 5-2, part type HRL-xxxC.)

## CAUTION: EFFECTS OF POWER DISTRIBUTION SYSTEMS ON INVERTERS

In the cases below involving a general-purpose inverter, a large peak current can flow on the power supply side, sometimes destroying the converter module:

1. The unbalance factor of the power supply is $3 \%$ or higher.
2. The power supply capacity is at least 10 times greater than the inverter capacity (or the power supply capacity is 500 kVA or more).
3. Abrupt power supply changes are expected, due to conditions such as:
a. Several inverters are interconnected with a short bus.
b. A thyristor converter and an inverter are interconnected with a short bus.
c. An installed phase advance capacitor opens and closes.

Where these conditions exist or when the connected equipment must be highly reliable, you MUST install an input-side AC reactor of 3\% (at a voltage drop at rated current) with respect to the supply voltage on the power supply side. Also, where the effects of an indirect lightning strike are possible, install a lightning conductor.

## CAUTION: EFFECTS OF SHARING POWER SOURCE BETWEEN INVERTER AND OTHER MOTORS

An electric cooling fan for the motor shall be powered from another system. A motor directly connected to the power source shall also be power from another system. If they are powered from the same system as the inverter, an insufficient voltage protection error (E09)or an instantaneous power failure protection error (E16) may occur when the inverter is turned OFF.

CAUTION: Do not install inverters in a corner-grounded Delta distribution system. The resulting line imbalance will cause premature line fuse failure and failure of the inverter input bridge rectifier. Install in a balanced Delta or Wye distribution system only.

CAUTION: When the EEPROM error E8 occurs, be sure to confirm the setting values again.

CAUTION: When using normally closed active state settings (C011 to C019) for externally commanded Forward or Reverse terminals [FW] or [RV], the inverter may start automatically when the external system is powered OFF or disconnected from the inverter! So, do not use normally closed active state settings for Forward or Reverse terminals [FW] or [RV] unless your system design protects against unintended motor operation.

CAUTION: Do not discard the inverter with household waste. Contact an industrial waste management company in your area who can treat industrial waste without polluting the environment.


CAUTION: In all the illustrations in this manual, covers and safety devices are occasionally removed to describe the details. While operating the product, make sure that the covers and safety devices are placed as they were specified originally and operate it according to the instruction manual.

## UL ${ }^{\circledR}$ Cautions, Warnings, and Instructions

Wiring Warnings for Electrical Practices and Wire Sizes

The Cautions, Warnings, and instructions in this section summarize the procedures necessary to ensure an inverter installation complies with Underwriters Laboratories ${ }^{\circledR}$ guidelines.

The SJ7002 series inverter family is an open-type and/or Enclosed Type 1 (when employing accessory Type 1 Chassis Kit) AC inverter with 3-phase input and 3-phase output. The inverter are intended for use in an enclosure. The inverter supplies adjustable voltage and adjustable frequency to an AC motor. The inverter can automatically maintain a constant volts $/ \mathrm{Hz}$ ratio to enhance the motor capability throughout its entire speed range.

WARNING: Use $65 / 75^{\circ} \mathrm{C} \mathrm{Cu}$ wire only or equivalent. For SJ700 series except SJ700-300Lxx and SJ700-370Lxx.

WARNING: Use $75^{\circ} \mathrm{C} \mathrm{Cu}$ wire only or equivalent. For SJ700-300Lxx and SJ700-370Lxx.

WARNING: Suitable for use on a circuit capable of delivering not more than 100,000 rms symmetrical amperes with 240 V maximum. For models with suffix L (200V class).

WARNING: Suitable for use on a circuit capable of delivering not more than $100,000 \mathrm{rms}$ symmetrical amperes with 480 V maximum. For models with suffix H ( 400 V class).

WARNING: The inverter must be installed in an environment that is rated for at least Pollution Degree 2 or equivalent.

WARNING: The ambient temperature must not exceed $50^{\circ} \mathrm{C}$.

WARNING: The capacitor discharge time is 10 minutes or more. (Caution: Care must be taken to avoid the risk of electric shock.)

WARNING: Each model of the inverter has a solid-state overload protection circuit or an equivalent feature for the motor.

Terminal Tighten- The wire size range and tightening torque for field wiring terminals are presented in the table ing Torque and Wire Size

| Input Voltage | Motor Output |  | 400 VInverter Model | Power Terminals | Wire Size Range (AWG) | Torque |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HP | kW |  |  |  | ft-lbs | ( $\mathrm{N}-\mathrm{m}$ ) |
| 400 V | 0.5 | 0.75 | SJ700-007HFU2/E | (All) | 14 (stranded only) | 1.3 | 1.8 |
|  | 1 | 1.5 | SJ700-015HFU2/E | (All) | 14 (stranded only) | 1.3 | 1.8 |
|  | 2 | 2.2 | SJ700-022HFU2/E | (All) | 14 (stranded only) | 1.3 | 1.8 |
|  | 3 | 4.0 | SJ700-040HFU2/E | (All) | 14 (stranded only) | 1.3 | 1.8 |
|  | 7.5 | 5.5 | SJ700-055HFU2/E | (All) | 12 | 3.0 | 4.0 |
|  | 10 | 7.5 | SJ700-075HFU2/E | (All) | 10 | 3.0 | 4.0 |
|  | 15 | 11 | SJ700-110HFU2/E | (All) | 8 | 3.0 | 4.0 |
|  | 20 | 15 | SJ700-150HFU2/E | (All) | 6 | 3.6 | 4.9 |
|  | 25 | 18.5 | SJ700-185HFU2/E | (All) | 6 | 3.6 | 4.9 |
|  | 30 | 22 | SJ700-220HFU2/E | (All) | 6 or 4 | 6.5 | 8.8 |
|  | 40 | 30 | SJ700-300HFU2/E | (All) | 3 | 6.5 | 8.8 |
|  | 50 | 37 | SJ700-370HFU2/E | (All) | 1 | 14.8 | 20.0 |
|  | 60 | 45 | SJ700-450HFU2/E | (All) | 1 | 14.8 | 20.0 |
|  | 75 | 55 | SJ700-550HFU2/E | (All) | 2/0 | 14.5 | 19.6 |


| Input Voltage | Motor Output |  | $\stackrel{400 \mathrm{~V}}{\text { Inverter Model }}$ | Power Terminals | Wire Size Range (AWG) | Torque |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HP | kW |  |  |  | ft-lbs | ( $\mathrm{N}-\mathrm{m}$ ) |
| 400 V | 100 | 75 | SJ700-750HFU2/E | (All) | 1/0 \|| 1/0 | 14.8 | 20.0 |
|  | 125 | 90 | SJ700-900HFU2/E | (All) | 1/0 \|| 1/0 | 14.8 | 20.0 |
|  | 150 | 110 | SJ700-1100HFU2/E | (All) | 3/0 \|| 3/0 | 25.8 | 35.0 |
|  | 150 | 132 | $\begin{aligned} & \text { SJ700-1320HFE2, } \\ & \text { SJ700-1500HFU2 } \end{aligned}$ | (All) | 3/0 \|| 3/0 | 25.8 | 35.0 |
|  | 250 | 185 | SJ700-1850HFU2/E | [R, S, T, U, V, W] | $250 \mathrm{kcmil} \times 2$ | 55.3 | 75.0 |
|  |  |  |  | [P, PD, N] | $300 \mathrm{kcmil} \times 2$ | 6.0 | 8.1 |
|  |  |  |  | [ $\mathrm{P}, \mathrm{N}]$ Braking unit | 1 | 55.3 | 75.0 |
|  |  |  |  | Earth GND | 250 kcmil | 28.9 | 39.2 |
|  | 400 | 315 | SJ700-3150HFU2/E | [R, S, T, U, V, W] | $400 \mathrm{kcmil} \times 2$ | 32.5 | 44.0 |
|  |  |  |  | [P, PD, N] | $500 \mathrm{kcmil} \times 2$ | 14.8 | 20 |
|  |  |  |  | [ $\mathrm{P}, \mathrm{N}]$ Braking unit | 250 kcmil | 32.5 | 44.0 |
|  |  |  |  | Earth GND | 400 kcmil | 28.9 | 39.2 |
|  | 500 | 400 | SJ700-4000HFU2/E | [R, S, T, U, V, W] | $600 \mathrm{kcmil} \times 2$ | 38.4 | 52.0 |
|  |  |  |  | [P, PD, N] | $800 \mathrm{kcmil} \times 2$ | 14.8 | 20 |
|  |  |  |  | [P, N] Braking unit | $250 \mathrm{kcmil} \times 2$ | 38.4 | 52.0 |
|  |  |  |  | Earth GND | 600 kcmil | 28.9 | 39.2 |

Fuse and Circuit The inverter's input power wiring must include UL Listed, dual-element, 600 V fuses, or UL Breaker Sizes Listed, inverse-time, 600 V circuit breakers.

| Input <br> Voltage | Motor Output |  | $\begin{gathered} 200 \mathrm{~V} \\ \text { Inverter Model } \end{gathered}$ | Ampere Rating for Fuse or Breaker | Input <br> Voltage | Motor Output |  | $\begin{gathered} 400 \mathrm{~V} \\ \text { Inverter Model } \end{gathered}$ | Ampere Rating for Fuse or Breaker |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HP | kW |  |  |  | HP | kW |  |  |
| 200 V | 0.5 | 0.4 | SJ700-004LFU2 | 5A | 400 V | - | - | - | - |
|  | 1 | 0.75 | SJ700-007LFU2 | 10A |  | 1 | 0.75 | SJ700-007HFU2/E | 5A |
|  | 2 | 1.5 | SJ700-015LFU2 | 15A |  | 2 | 1.5 | SJ700-015HFU2/E | 10A |
|  | 3 | 2.2 | SJ700-022LFU2 | 20A |  | 3 | 2.2 | SJ700-022HFU2/E | 10A |
|  | 5 | 3.7 | SJ700-037LFU2 | 30A |  | 5 | 3.7 | SJ700-037HFU2/E | 15A |
|  | 7.5 | 5.5 | SJ700-055LFU2 | 30A |  | 7.5 | 5.5 | SJ700-055HFU2/E | 15A |
|  | 10 | 7.5 | SJ700-075LFU2 | 40A |  | 10 | 7.5 | SJ700-075HFU2/E | 20A |
|  | 15 | 11 | SJ700-110LFU2 | 60A |  | 15 | 11 | SJ700-110HFU2/E | 30A |
|  | 20 | 15 | SJ700-150LFU2 | 80A |  | 20 | 15 | SJ700-150HFU2/E | 40A |
|  | 25 | 18.5 | SJ700-185LFU2 | 100A |  | 25 | 18.5 | SJ700-185HFU2/E | 50A |
|  | 30 | 22 | SJ700-220LFU2 | 125A |  | 30 | 22 | SJ700-220HFU2/E | 60A |
|  | 40 | 30 | SJ700-300LFU2 | 150A |  | 40 | 30 | SJ700-300HFU2/E | 70A |
|  | 50 | 37 | SJ700-370LFU2 | 175A |  | 50 | 37 | SJ700-370HFU2/E | 90A |
|  | 60 | 45 | SJ700-450LFU2 | 225A |  | 60 | 45 | SJ700-450HFU2/E | 125A |
|  | 75 | 55 | SJ700-550LFU2 | 250A |  | 75 | 55 | SJ700-550HFU2/E | 125A |
|  |  |  |  |  |  | 100 | 75 | SJ700-750HFU2/E | 225A |
|  |  |  |  |  |  | 125 | 90 | SJ700-900HFU2/E | 225A |
|  |  |  |  |  |  | 150 | 110 | SJ700-1100HFU2/E | 300A |
|  |  |  |  |  |  | 200 | 150 | $\begin{array}{\|l\|} \hline \text { SJ700-1320HFE2 } \\ \text { SJ700-1500HFU2 } \end{array}$ | 300A |
|  |  |  |  |  |  | 250 | 185 | SJ700-1850HFU2/E | 400A |
|  |  |  |  |  |  | 400 | 315 | SJ700-3150HFU2/E | 700A |
|  |  |  |  |  |  | 55 | 400 | SJ700-4000HFU2/E | 1000A |

## Wire Connectors



## Motor Overload Protection



WARNING: Field wiring connections must be made by a UL Listed and CSA Certified ring lug terminal connector sized for the wire gauge being used. The connector must be fixed using the crimping tool specified by the connector manufacturer.


Hitachi SJ7002 inverters provide solid state motor overload protection, which depends on the proper setting of the following parameters:

- B012 "electronic overload protection"
- B212 "electronic overload protection, 2nd motor"
- B312 "electronic overload protection, 3rd motor"

Set the rated current [Amperes] of the motor(s) with the above parameters. The setting range is $0.2 *$ rated current to $1.2 *$ rated current.

WARNING: Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the NEC and any additional local codes.

WARNING: When two or more motors are connected to the inverter, they cannot be protected by the electronic overload protection. Install an external thermal relay on each motor.

## Table of Contents

Safety Messages
Hazardous High Voltage ..... i
General Precautions - Read These First! ..... ii
Index to Warnings and Cautions in This Manual ..... iv
General Warnings and Cautions ..... ix
UL® Cautions, Warnings, and Instructions ..... xii
Table of Contents
Revisions ..... xix
Contact Information ..... XX
Chapter 1: Getting Started Introduction ..... 1-2
Inverter Specifications ..... 1-6
Introduction to Variable-Frequency Drives ..... 1-14
Frequently Asked Questions ..... 1-18
Chapter 2: Inverter Mounting and Installation
Orientation to Inverter Features ..... 2-2
Basic System Description ..... 2-5
Step-by-Step Basic Installation ..... 2-6
Powerup Test ..... 2-27
Using the Front Panel Keypad ..... 2-29
Emergency Stop Function ..... 2-37
Chapter 3: Configuring Drive Parameters
Choosing a Programming Device ..... 3-2
Using Keypad Devices ..... 3-3
"D" Group: Monitoring Functions ..... 3-6
"F" Group: Main Profile Parameters ..... 3-9
"A" Group: Standard Functions ..... 3-10
"B" Group: Fine-Tuning Functions ..... 3-30
"C" Group: Intelligent Terminal Functions ..... 3-50
"H" Group: Motor Constants Functions ..... 3-66
"P" Group: Expansion Card Functions ..... 3-69
"U" Group: User-selectable Menu Functions ..... 3-74
Programming Error Codes ..... 3-75
Chapter 4: Operations and Monitoring
Introduction ..... 4-2
Optional Controlled Decel and Alarm at Power Loss ..... 4-4
Connecting to PLCs and Other Devices ..... 4-7
Using Intelligent Input Terminals ..... 4-13
Using Intelligent Output Terminals ..... 4-43
Analog Input Operation ..... 4-63
Analog Output Operation ..... 4-66
Setting Motor Constants for Vector Control ..... 4-69
PID Loop Operation ..... 4-75
Configuring the Inverter for Multiple Motors ..... 4-76
Chapter 5: Inverter System Accessories
Introduction ..... 5-2
Component Descriptions ..... 5-3
Dynamic Braking ..... 5-6
Chapter 6: Troubleshooting and Maintenance
Troubleshooting ..... 6-2
Monitoring Trip Events, History, \& Conditions ..... 6-5
Restoring Factory Default Settings ..... 6-16
Maintenance and Inspection ..... 6-17
Warranty ..... 6-29
Appendix A: Glossary and Bibliography
Glossary ..... A-2 ..... A-6
Bibliography
Bibliography
Appendix B: Serial Communications
Introduction ..... B-2
ASCII Mode Communications ..... B-5
Communications Reference Information ..... B-18
ModBus Mode Communications ..... B-21
ModBus Data Listing ..... B-33
Appendix C: Drive Parameter Settings Tables
Introduction ..... C-2
Parameter Settings for Keypad Entry ..... C-2
Appendix D: CE-EMC Installation Guidelines
CE-EMC Installation Guidelines ..... D-2
Precautions for EMC, Models SJ700-004 to -1500 ..... D-4
Precautions for EMC, Models SJ700-1850 to -4000 ..... D-5
Index

## Revisions

Revision History Table

| No. | Revision Comments | Date of Issue | Operation <br> Manual No. |
| :---: | :--- | :---: | :---: |
|  | Initial release of manual NB206X | August 2008 | NB206X |
| A | Add new inverter models from -004xxx to 037xxx, and models <br> $-750 H x x ~ t o ~-4000 H x x ~$ <br> Numerous additions and corrections throughout manual | October 2009 | NB206XA |

## Contact Information

| Hitachi America, Ltd. | Hitachi Australia Ltd. |
| :--- | :--- |
| Industrial Sales Division | Level 3, 82 Waterloo Road |
| 50 Prospect Avenue | North Ryde, N.S.W. 2113 |
| Tarrytown, NY 10591 | Australia |
| U.S.A. | Phone: +61-2-9888-4100 |
| Phone: +1-914-631-0600 | Fax: +61-2-9888-4188 |
| Fax: +1-914-631-3672 |  |
| Web site: www.hitachi-america.us/inverters |  |
| Hitachi Europe GmbH | Hitachi Industrial Equipment Systems Co., Ltd. |
| Am Seestern 18 | AKS Building, 3, Kanda Neribei-cho |
| D-40547 Düsseldorf | Chiyoda-ku, Tokyo, 101-0022 |
| Germany | Japan |
| Phone: +49-211-5283-0 | Phone: +81-3-4345-6910 |
| Fax: +49-211-5283-649 | Fax: +81-3-4345-6067 |
| Web site: www.hitachi-ds.com/en/product/inv/ |  |
| Hitachi Asia Ltd. | Hitachi Industrial Equipment Systems Co, Ltd. |
| 16 Collyer Quay | Narashino Division |
| \#20-00 Hitachi Tower, Singapore 049318 | 1-1, Higashi-Narashino 7-chome |
| Singapore | Narashino-shi, Chiba 275-8611 |
| Phone: +65-538-6511 | Japan |
| Fax: +65-538-9011 | Phone: +81-47-474-9921 |
|  | Fax: +81-47-476-9517 |
|  | Web site: www.hitachi-ies.co.jp/english/ |

Hitachi Asia (Hong Kong) Ltd.
7th Floor, North Tower
World Finance Centre, Harbour City
Canton Road, Tsimshatsui, Kowloon
Hong Kong
Phone: +852-2735-9218
Fax: +852-2735-6793

NOTE: To receive technical support for the Hitachi inverter you purchased, contact the Hitachi inverter dealer from whom you purchased the unit, or the sales office or factory contact listed above. Please be prepared to provide the following inverter nameplate information:

1. Model
2. Date of purchase
3. Manufacturing number (MFG No.)
4. Symptoms of any inverter problem

If any inverter nameplate information is illegible, please provide your Hitachi contact with any other legible nameplate items. To reduce unpredictable downtime, we recommend that you stock a spare inverter.

## Getting Started

In This Chapter.... ..... page

- Introduction ..... 2
- Inverter Specifications. ..... $\underline{6}$
- Introduction to Variable-Frequency Drives ..... 14
- Frequently Asked Questions. ..... 18


## Introduction

Congratulations on your purchase of an SJ7002 Series Hitachi inverter! This inverter drive features state-of-the-art circuitry and components to provide high performance. The housing footprint is exceptionally small, given the size of the corresponding motor. The Hitachi SJ7002 product line includes more than twenty inverter models to cover motor sizes from $1 / 2$ horsepower to 500 horsepower, in either 230 VAC or 480 VAC power input versions. The main features are:

- 200V Class and 400 V Class inverters
- U.S. or European version available
- Sensorless vector control
- Regenerative braking circuit
- Different operator keypads available for RUN/ STOP control and setting parameters
- Built-in RS-422 communications interface to allow configuration from a PC and for field bus external modules
- Sixteen programmable speed levels
- Motor constants are programmable, or may be set via auto-tuning
- PID control adjusts motor speed automatically to maintain a process variable value

The design of Hitachi inverters overcomes many of the traditional trade-offs between speed, torque and efficiency. The performance characteristics are:

- High starting torque of $150 \%$ rating or greater
- Continuous operation at $100 \%$ rated torque within a $1: 10$ speed range $(6 / 60 \mathrm{~Hz} / 5 / 50 \mathrm{~Hz})$ without motor derating
- Models from $0.4-22 \mathrm{~kW}$ ( $1 / 2$ to 30 hp ) have builtin dynamic braking circuits
- Models from $0.4-11 \mathrm{~kW}$ ( $1 / 2$ to 15 hp ) have optional built-in dynamic braking resistor
- Cooling fan has ON/OFF selection to provide longer life

A full line of accessories from Hitachi is available to complete your motor control application. These include:

- Digital remote operator keypad
- Expansion card for sensor feedback
- Braking resistors
- Radio noise filters
- Built-in CE compliance filters
- Additional factory I/O network interface cards (to be announced)


Model SJ700-110HFUF2 (U.S. version)


Model SJ700-037HFEF2
(European version)


Expansion Card - Encoder Input

Digital Operator Interface
Components

The SJ7002 Series inverters have a detachable keypad (called a digital operator) on the front panel of the housing. The particular keypad that comes with the inverter depends on the country or continent corresponding to the particular model number. The standard digital operators occupy just part of the keypad recess in the panel. Therefore, the inverter comes with a snap-in panel filler plate that mounts below the keypad as shown.

These detachable keypads can be mounted in a NEMA cabinet panel door cut-out, for example. Threaded metal inserts on the rear of the keypads facilitate this external mounting configuration. A short cable then connects the keypad unit to the connector in the inverter keypad recess. See Chapter 3 for information on how to install and use these keypads and cables.


Digital Operator OPE-SRE standard for -LFU and -HFU models


Digital Operator OPE-S standard for -HFE models

The digital operator / copy unit is optional, and occupies the entire keypad recess when mounted. It has the additional capability of reading (uploading) the parameter settings in the inverter into its memory. Then you can install the copy unit on another inverter and write (download) the parameter settings into that inverter. OEMs will find this unit particularly useful, as one can use a single copy unit to transfer parameter settings from one inverter to many.

Other digital operator interfaces may be available from your Hitachi distributor for particular industries or international markets. Contact your Hitachi distributor for further details.

Removable Components

The SJ7002 Series inverters are designed for long life and ease of service. Several components are removable as shown below, aiding installation or parts replacement. Details on how and when to remove these parts are in the referenced chapters.


Specifications Label and Agency Approvals

The Hitachi SJ7002 inverters have product specifications labels located on the front and the right side of the housing, as shown below. The director reactor filters also have a product label. Be sure to verify that the specifications on the labels match your power source, motor, and application safety requirements.


Model Number Convention

The model number for a specific inverter contains useful information about its operating characteristics. Refer to the model number legend below:


## Inverter Specifications

Tables for 200V class inverters

Note that "General Specifications" on page 1-10 covers all SJ7002 inverters, followed by footnotes for all specifications tables. The 200V models from -004 to -220LFU2
( 0.5 to 30 HP ) include internal dynamic braking units (see "Dynamic Braking" on page 5-6).

| Item |  |  | 200V Class Specifications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002, 200V models, U.S. version |  |  | 004LFUF2 | 007LFUF2 | 015LFUF2 | 022LFUF2 | 037LFUF2 |
| Applicable motor size, 4-pole *2 |  | HP | 0.5 | 1 | 2 | 3 | 5 |
|  |  | kW | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 |
| Rated capacity, kVA, 200V / 240V |  |  | 1.0 / 1.2 | 1.7 / 2.0 | $2.5 / 3.1$ | 3.6 / 4.3 | 5.7 / 6.8 |
| Rated input voltage |  |  | 3-phase: 200 to $240 \mathrm{~V}+10 \% /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |  |
| Rated input current (A) |  |  | 3.3 | 5.5 | 8.3 | 12 | 18 |
| Rated output voltage *3 |  |  | 3 -phase (3-wire) 200 to 240 V (corresponding to input voltage) |  |  |  |  |
| Rated output current (A) |  |  | 3 | 5 | 7.5 | 10.5 | 16.5 |
| Overload capacity, output current (A) |  |  | 150\% for $60 \mathrm{sec} ., 200 \%$ for 3 sec . |  |  |  |  |
| Efficiency at 100\% rated output, \% |  |  | 85.1 | 89.5 | 92.3 | 93.2 | 94.0 |
| Watt loss, approximate (W) | at $70 \%$ output |  | 64 | 76 | 102 | 127 | 179 |
|  | at $100 \%$ output |  | 70 | 88 | 125 | 160 | 235 |
| Dynamic braking approx. \% torque, short time stop *7 | internal chopper |  | 20 | 20 | 20 | 20 | 20 |
|  | with external res. |  | >150 | >150 | >150 | >150 | 110 |
| Min. external braking resistance |  | $\Omega$ | 50 | 50 | 35 | 35 | 35 |
| DC braking |  |  | Variable operating frequency, time, and braking force |  |  |  |  |
| Electrical filtering |  |  | Built-in EMC filter and built-in zero-phase reactor |  |  |  |  |
| Weight | kg / lb |  | $3.5 / 7.7$ | $3.5 / 7.7$ | $3.5 / 7.7$ | 3.5 / 7.7 | $3.5 / 7.7$ |


| Item |  |  | 200V Class Specifications |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002, 200V models, U.S. version |  |  | 055LFUF2 | 075LFUF2 | 110LFUF2 | 150LFUF2 | 185LFU2 | 220LFU2 |
| Applicable motor size, 4-pole *2 |  | HP | 7.5 | 10 | 15 | 20 | 25 | 30 |
|  |  | kW | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Rated capacity, kVA, 200V / 240V |  |  | 8.3 / 9.9 | 11.0 / 13.3 | 15.9 / 19.1 | 22.1 / 26.6 | 26.3 / 31.5 | 32.9 / 39.4 |
| Rated input voltage |  |  | 3-phase: 200 to $240 \mathrm{~V}+10 \% /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |  |  |
| Rated input current (A) |  |  | 26 | 35 | 51 | 70 | 84 | 105 |
| Rated output voltage *3 |  |  | 3 -phase (3-wire) 200 to 240 V (corresponding to input voltage) |  |  |  |  |  |
| Rated output current (A) |  |  | 24 | 32 | 46 | 64 | 76 | 95 |
| Overload capacity, output current (A) |  |  | $150 \%$ for $60 \mathrm{sec} ., 200 \%$ for 3 sec . |  |  |  |  |  |
| Efficiency at $100 \%$ rated output, \% |  |  | 94.4 | 94.6 | 94.8 | 94.9 | 95.0 | 95.0 |
| Watt loss, approximate (W) | at 70\% output |  | 242 | 312 | 435 | 575 | 698 | 820 |
|  | at $100 \%$ output |  | 325 | 425 | 600 | 800 | 975 | 1150 |
| Dynamic braking approx. \% torque, short time stop *7 | internal chopper |  | 20 | 20 | 10 | 10 | 10 | 10 |
|  | with external res. |  | 140 | >150 | 110 | 110 | 90 | 110 |
| Min. external braking resistance |  | $\Omega$ | 16 | 10 | 10 | 7.5 | 7.5 | 5 |
| DC braking |  |  | Variable operating frequency, time, and braking force |  |  |  |  |  |
| Electrical filtering |  |  | Built-in EMC filter and built-in zero-phase reactor |  |  |  |  |  |
| Weight | kg / lb |  | $6 / 13.2$ | 6/13.2 | 6/13.2 | 14/30.8 | 14 / 30.8 | 14/30.8 |


| Item |  |  | 200V Class Specifications, continued |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002, 200V models, U.S. version |  |  | 300LFU2 | 370LFU2 | 450LFU2 | 550LFU2 |
| Applicable motor size *2 |  | HP | 40 | 50 | 60 | 75 |
|  |  | kW | 30 | 37 | 45 | 55 |
| Rated capacity, kVA, 200V / 240V |  |  | 41.9 / 50.2 | 50.2 / 60.2 | 63.0 / 75.6 | 76.2 / 91.4 |
| Rated input voltage |  |  | 3-phase: 200 to $240 \mathrm{~V}+10 /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |
| Rated input current (A) |  |  | 133 | 160 | 200 | 242 |
| Rated output voltage *3 |  |  | 3-phase (3-wire) 200 to 240 V (corresponding to input voltage) |  |  |  |
| Rated output current (A) |  |  | 121 | 145 | 182 | 220 |
| Overload capacity, output current (A) |  |  | $150 \%$ for $60 \mathrm{sec} ., 200 \%$ for 3 sec . |  |  |  |
| Efficiency at $100 \%$ rated output, \% |  |  | 95.0 | 95.1 | 95.1 | 95.1 |
| Watt loss, approximate (W) | at $70 \%$ output |  | 1100 | 1345 | 1625 | 1975 |
|  | at $100 \%$ output |  | 1550 | 1900 | 2300 | 2800 |
| Dynamic braking approx. \% torque, short time stop *7 | w/o braking unit |  | 10 | 10 | 10 | 10 |
|  | with braking unit |  | 55-110\% | 45-90\% | 35-75\% | 30-60\% |
| DC braking |  |  | Variable operating frequency, time, and braking force |  |  |  |
| Electrical filtering |  |  | Built-in EMC filter and built-in zero-phase reactor |  |  |  |
| Weight | kg / lb |  | $22 / 48.4$ | $30 / 66$ | $30 / 66$ | 43 / 94.6 |

Tables for 400V class inverters

Note that "General Specifications" on page 1-10 covers all SJ7002 inverters, followed by footnotes for all specifications tables. The 400V models from -007 to -220HFU2 ( 7.5 to 30 HP ) include internal dynamic braking units (see "Dynamic Braking" on page 5-6).

| Item |  |  | 400V Class Specifications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002 inverters, 400 V models | U.S. version |  | 007HFUF2 | 015HFUF2 | 022HFUF2 | 040HFUF2 | 055HFUF2 |
|  | European ver. |  | 007HFEF2 | 015HFEF2 | 022HFEF2 | 040HFEF2 | 055HFEF2 |
| Applicable motor size *2 |  | HP | 1 | 2 | 3 | 5 | 7.5 |
|  |  | kW | 0.75 | 1.5 | 2.2 | 4 | 5.5 |
| Rated capacity, kVA, 400 / 480V |  |  | 1.7 / 2.0 | 2.5 / 3.1 | 3.6 / 4.3 | 5.7 / 6.8 | $9.7 / 11.6$ |
| Rated input voltage |  |  | 3-phase (3-wire) 380 to $480 \mathrm{~V}+10 /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |  |
| Rated input current (A) |  |  | 2.8 | 4.2 | 5.8 | 9.9 | 13 |
| Rated output voltage *3 |  |  | 3 -phase (3-wire): 380 to 480 V (corresponding to input voltage) |  |  |  |  |
| Rated output current (A) |  |  | 2.5 | 3.8 | 5.3 | 9.0 | 14 |
| Overload capacity, output current (A) |  |  | 150\% for 60 sec ., $200 \%$ for 3 sec . |  |  |  |  |
| Efficiency at 100\% rated output, \% |  |  | 89.5 | 92.3 | 93.2 | 94.0 | 94.4 |
| Watt loss, approximate (W) | at 70\% output |  | 76 | 102 | 127 | 179 | 242 |
|  | at $100 \%$ output |  | 88 | 125 | 160 | 235 | 325 |
| Dynamic braking approx. \% torque, short time stop *7 | internal chopper |  | 20 | 20 | 20 | 20 | 20 |
|  | with external res. |  | >150 | $>150$ | >150 | >150 | 130 |
| Min. external braking resistance |  | $\Omega$ | 100 | 100 | 100 | 70 | 70 |
| DC braking |  |  | Variable operating frequency, time, and braking force |  |  |  |  |
| Electrical filtering |  |  | Built-in EMC filter and built-in zero-phase reactor |  |  |  |  |
| Weight | kg / lb |  | 3.5 / 7.7 | 3.5 / 7.7 | 3.5 / 7.7 | 3.5 / 7.7 | 6/13.2 |


| Item |  |  | 400V Class Specifications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002 inverters, 400 V models | U.S. version |  | 075HFUF2 | 110HFUF2 | 150HFUF2 | 185HFU2 | 220HFU2 |
|  | European ver. |  | 075HFEF2 | 110HFEF2 | 150HFEF2 | 185HFE2 | 220HFE2 |
| Applicable motor size *2 |  | HP | 10 | 15 | 20 | 25 | 30 |
|  |  | kW | 7.5 | 11 | 15 | 18.5 | 22 |
| Rated capacity, kVA, 400 / 480V |  |  | 11 / 13.3 | 15.9/19.1 | $22.1 / 26.6$ | 26.3 / 31.5 | 33.2 / 39.9 |
| Rated input voltage |  |  | 3-phase (3-wire) 380 to $480 \mathrm{~V}+10 /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |  |
| Rated input current (A) |  |  | 18 | 25 | 35 | 42 | 53 |
| Rated output voltage *3 |  |  | 3-phase (3-wire): 380 to 480 V (corresponding to input voltage) |  |  |  |  |
| Rated output current (A) |  |  | 16 | 23 | 32 | 38 | 48 |
| Overload capacity, output current (A) |  |  | $150 \%$ for $60 \mathrm{sec} ., 200 \%$ for 3 sec . |  |  |  |  |
| Efficiency at $100 \%$ rated output, \% |  |  | 94.6 | 94.8 | 94.9 | 95.0 | 95.0 |
| Watt loss, approximate (W) | at $70 \%$ output |  | 312 | 435 | 575 | 698 | 820 |
|  | at $100 \%$ output |  | 425 | 600 | 800 | 975 | 1150 |
| Dynamic braking approx. \% torque, short time stop *7 | internal chopper |  | 20 | 10 | 10 | 10 | 10 |
|  | with external res. |  | >150 | 130 | 140 | 140 | 110 |
| Min. external braking resistance |  | $\Omega$ | 35 | 35 | 24 | 24 | 20 |
| DC braking |  |  | Variable operating frequency, time, and braking force |  |  |  |  |
| Electrical filtering |  |  | Built-in EMC filter and built-in zero-phase reactor |  |  |  |  |
| Weight | kg / lb |  | 5/11 | 5/11 | 12 / 26.4 | 12 / 26.4 | $12 / 26.4$ |


| Item |  |  | 400V Class Specifications |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002 inverters, 400 V models | U.S. version |  | 300HFU2 | 370HFU2 | 450HFU2 | 550HFU2 | 750HFU2 |
|  | European ver. |  | 300HFE2 | 370HFE2 | 450HFE2 | 550HFE2 | 750HFE2 |
| Applicable motor size *2 |  | HP | 40 | 50 | 60 | 75 | 100 |
|  |  | kW | 30 | 37 | 45 | 55 | 75 |
| Rated capacity, kVA, 400 / 480V |  |  | 40.1 / 48.2 | 51.9 / 62.3 | 62.3 / 74.8 | 76.2/91.4 | $\begin{aligned} & 103.2 / \\ & 123.8 \end{aligned}$ |
| Rated input voltage |  |  | 3-phase (3-wire) 380 to $480 \mathrm{~V}+10 /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |  |
| Rated input current (A) |  |  | 64 | 83 | 99 | 121 | 164 |
| Rated output voltage *3 |  |  | 3-phase (3-wire): 380 to 480 V (corresponding to input voltage) |  |  |  |  |
| Rated output current (A) |  |  | 58 | 75 | 90 | 110 | 149 |
| Overload capacity, output current (A) |  |  | $150 \%$ for $60 \mathrm{sec} ., 200 \%$ for 3 sec . |  |  |  |  |
| Efficiency at $100 \%$ rated output, \% |  |  | 95.1 | 95.1 | 95.1 | 95.1 | 95.2 |
| Watt loss, approximate (W) | at $70 \%$ output |  | 1100 | 1345 | 1625 | 1975 | 2675 |
|  | at $100 \%$ output |  | 1550 | 1900 | 2300 | 2800 | 3800 |
| Dynamic braking approx. \% torque, short time stop *7 | w/o braking unit |  | 10\% | 10\% | 10\% | 10\% | 8\% |
|  | with braking unit |  | Refer to separate DB Unit instruction manual or contact your Hitachi distributor |  |  |  |  |
| DC braking |  |  | Variable operating frequency, time, and braking force |  |  |  |  |
| Electrical filtering |  |  | Built-in EMC filter and built-in zero-phase reactor |  |  |  |  |
| Weight | kg / lb |  | 22 / 48.4 | $30 / 66$ | $30 / 66$ | $50 / 110$ | $55 / 121$ |

The 400 V models from -1850 to $-4000 \mathrm{HFU} 2 / \mathrm{HFE} 2$ ( 250 to 525 HP ) include a DC reactor and ferrite core.

| Item |  | 400V Class Specifications |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ7002 inverters, 400 V models | U.S. version | 900HFU2 | 1100HFU2 | 1500HFU2 | 1850HFU2 | 3150HFU2 | 4000HFU2 |
|  | European ver. | 9000HFE2 | 1100HFE2 | 1320HFE2 | 1850HFE2 | 3150HFE2 | 4000HFE2 |
| Applicable motor size *2 |  | 125 | 150 | 200 | 250 | 425 | 525 |
|  |  | 90 | 110 | 150 | 185 | 315 | 400 |
| Rated capacity, kVA, 400 / 480V |  | 121.9/146.3 | 150.3/180.4 | 180.1/216.1 | 256/308 | 416 / 499 | 554 / 665 |
| Rated input voltage |  | 3-phase (3-wire) 380 to $480 \mathrm{~V}+10 /-15 \%, 50 / 60 \mathrm{~Hz} \pm 5 \%$ |  |  |  |  |  |
| Rated input current (A) |  | 194 | 239 | 286 | 389 | 630 | 840 |
| Rated output voltage *3 |  | 3-phase (3-wire): 380 to 480 V (corresponding to input voltage) |  |  |  |  |  |
| Rated output current (A) |  | 176 | 217 | 260 | 370 | 600 | 800 |
| Overload capacity, output current (A) |  | $50 \%$ for $60 \mathrm{sec} ., 200 \%$ for 0.5 sec . |  |  | $50 \%$ for $60 \mathrm{sec} ., 180 \%$ for 0.5 sec . |  |  |
| Inv. efficiency at $100 \%$ rated output, \% |  | 95.2 | 95.2 | 95.2 | 96.5 | 96.2 | 96.3 |
| Inverter Watt loss, approximate (W) | at 70\% output | 3375 | 3900 | 4670 | 4700 | 8000 | 10500 |
|  | at $100 \%$ output | 4800 | 5550 | 6650 | 6700 | 11500 | 15000 |
| DCL efficiency at $100 \%$ rated output, \% |  | - | - | - | 99.9 | 99.9 | 99.9 |
| DCL Watt loss, approximate (kW) | at 70\% output | - | - | - | 0.1 | 0.1 | 0.1 |
|  | at $100 \%$ output | - | - | - | 0.2 | 0.2 | 0.2 |
| Dynamic braking approx. \% torque, short time stop *7 | w/o braking unit | 8\% | 8\% | 8\% | 10\% | 10\% | 10\% |
|  | with braking unit | Refer to separate DB Unit instruction manual or contact your Hitachi distributor |  |  |  |  |  |
| DC braking |  | Variable operating frequency, time, and braking force |  |  |  |  |  |
| Electrical filtering |  | Built-in EMC filter and zero-phase reactor |  |  | External DC reactor and ferrite core |  |  |
| Weight | kg / lb | 55/121 | 55/121 | 70 / 54 | 140/308 | 210/463 | 360 / 792 |

Footnotes for the preceding tables and the table that follows:
Note 1: The protection method conforms to JEM 1030.
Note 2: The applicable motor refers to Hitachi standard 3-phase motor (4-pole). When using other motors, care must be taken to prevent the rated motor current $(50 / 60 \mathrm{~Hz})$ from exceeding the rated output current of the inverter.
Note 3: The output voltage decreases as the main supply voltage decreases (except when using the AVR function). In any case, the output voltage cannot exceed the input power supply voltage.
Note 4: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, consult the motor manufacturer for the maximum allowable rotation speed.
Note 5: When SLV is selected, please set the carrier frequency higher than 2.1 kHz .
Note 6: At the rated voltage when using a Hitachi standard 3-phase, 4-pole motor (when selecting sensorless vector control-SLV).
Note 7: The braking torque via capacitive feedback is the average deceleration torque at the shortest deceleration (stopping from $50 / 60 \mathrm{~Hz}$ as indicated). It is not continuous regenerative braking torque. The average decel torque varies with motor loss. This value decreases when operating beyond 50 Hz . If a large regenerative torque is required, the optional regenerative braking resistor should be used.
Note 8: The frequency command will equal the maximum frequency at 9.8 V for input voltage 0 to 10 VDC , or at 19.6 mA for input current 4 to 20 mA . If this characteristic is not satisfactory for your application, contact your Hitachi sales representative.
Note 9: The storage temperature refers to the short-term temperature during transport.
Note 10: Conforms to the test method specified in JIS C0050 (1999). For the model types excluded in the standard specifications, contact your Hitachi sales representative.
Note 11: NEMA 1 applies up to 22 kW . An optional wire-entry conduit box is required for 0.4 kW to 55 kW models to meet NEMA 1 rating.

## General Specifications

The following table (continued on next page) applies to all SJ7002 inverter models.

| Item |  |  | General Specifications |
| :---: | :---: | :---: | :---: |
| Protective enclosure *1, *11 |  |  | IP20 (NEMA 1); models -750xFU2 to -4000xFU2 is IP00 |
| Control method |  |  | Line-to-line sine wave pulse-width modulation (PWM) control |
| Output frequency range *4 |  |  | 0.1 to 400 Hz |
| Frequency accuracy |  |  | Digital command: $\pm 0.01 \%$ of the maximum frequency Analog command: $\pm 0.2 \%$ (at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ ) |
| Frequency setting resolution |  |  | Digital: $\pm 0.01 \mathrm{~Hz} ;$ Analog: (max. frequency)/4000, [O] terminal: 12-bit 0 to 10 V ; [OI] terminal: 12-bit, 4-20mA; [O2] terminal: 12 -bit -10 to +10 V |
| Volt./Freq. characteristic *5 |  |  | V/F optionally variable ( 30 to 400 Hz base frequency), V/F control (constant torque, reduced torque), sensorless vector control, $0-\mathrm{Hz}$-range sensorless vector control |
| Speed fluctuation |  |  | $\pm 0.5 \%$ (sensorless vector control or 0-Hz range sensorless vector control) |
| Acceleration/deceleration time |  |  | 0.01 to $3600 \mathrm{sec} .$, (linear curve profiles, accel./decel. selection), two-stage accel./decel. |
| Starting Torque *6 |  |  | $200 \%$ at 0.3 Hz (SLV or 0Hz-range SLV), $150 \%$ at 0 Hz -range SLV, with motor one frame size down) <br> For -750 Hxx to $-1500 \mathrm{Hxx}: 180 \%$ at 0.3 Hz |
|  |  |  | $150 \%$ at 0 Hz range with feedback board (with 0 Hz -range sensorless vector control or with motor one frame size down) <br> For -750 Hxx to $-1500 \mathrm{Hxx}: 130 \%$ at 0.3 Hz |
| Carrier frequency range |  |  | Models -004xFU2 to -550xFU2: 0.5 to 15.0 kHz ; <br> Models - 750 xFU 2 to -1500 xFU 2 : 0.5 to 10.0 kHz ; <br> Models -1850HFU2 to -4000HFU2: 0.5 to 3.0 kHz |
| DC braking |  |  | Performs at start under set frequency at declaration, via an external input (braking force, time, and operating frequency) |
| Overload capacity (output current) |  |  | $150 \%$ for 60 seconds, $200 \%$ ( $180 \%$ for $75 \mathrm{~kW} / 100 \mathrm{HP}$ and larger) for 0.5 seconds |
| Input signal | Freq. setting | Operator keypad | Up and Down keys / Value settings |
|  |  | Potentiometer | Analog setting via potentiometer on operator keypad |
|  |  | External signal *8 | 0 to 10 VDC and -10 to +10 VDC (input impedance 10k Ohms), 4 to 20 mA (input impedance 250 Ohms), Potentiometer ( 1 k to 2 k Ohms, 2W) |
|  |  | Serial port | RS485 interface |
|  | FW/RV Run | Operator panel | Run key / Stop key (change FW/RV by function command) |
|  |  | External signal | FW Run/Stop (NO contact), RV set by terminal assignment (NC/NO), 3-wire input available |
|  |  | Serial port | RS485 interface |
|  | Intelligent Input terminals (assign eight functions to terminals) |  | RV (reverse run/stop), CF1~CF4 (multi-speed select), JG (jogging), DB (external DC braking), SET (set 2nd motor data), 2CH (2-stage accel./decel.), FRS (free-run stop), EXT (external trip), USP (unattended start protection), CS (commercial power source), SFT (software lock), AT (analog input voltage/current select), SET3 (set 3rd motor data), RS (reset inverter), STA (start, 3-wire interface), STP (stop, 3-wire interface), F/R (FW/RV 3-wire interface), PID (PID ON/OFF), PIDC (PID reset), CAS (control gain setting), UP (remote control Up function, motorized speed pot.), DWN (remote control Down function, motorized speed pot.), UDC (remote control data clearing), OPE (Operator control), SF1-SF7 (Multispeed bits 0-7), OLR (Overload limit change), TL (torque limit enable), TRQ1 (torque limit selection bit 1, LSB), TRQ2 (torque limit selection bit 2, MSB), PPI (Proportional / Proportional/Integral mode selection), BOK (Brake confirmation signal), ORT (Orientation - home search), LAC (LAC: LAD cancel), PCLR (Position deviation reset), STAT (pulse train position command input enable), ADD (trigger for frequency addition), F-TM (forcible-terminal operation), ATR (permission of torque commend input), KHC (cumulative power clearance), SON (servo ON), FOC (pre-excitation), MI1 (general-purpose input 1), MI2 (generalpurpose input 2), MI3 (general-purpose input 3), MI4 (general-purpose input 4), MI5 (general-purpose input 5), MI6 (general-purpose input 6), MI7 (general-purpose input 7), MI8 (general-purpose input 8), AHD (analog command holding), NO (not selected) |
|  | Thermistor input |  | One terminal (PTC characteristics) |


| Item |  | General Specifications |
| :---: | :---: | :---: |
| Output signal | Intelligent Output terminals (assign six functions to five open collector outputs and one relay NO-NC contact) | RUN (run signal), FA1 (Frequency arrival type 1 - constant speed), FA2 (Frequency arrival type 2 - over-frequency), OL (overload advance notice signal 1), OD (Output deviation for PID control), AL (alarm signal), FA3 (Frequency arrival type 3 - atfrequency), OTQ (over-torque signal), IP (Instantaneous power failure signal), UV (Under-voltage signal), TRQ (In torque limit), RNT (Run time over), ONT (Power-ON time over), THM (thermal alarm), BRK (Brake release signal), BER (Brake error signal), ZS (Zero speed detect), DSE (speed deviation maximum), POK (Positioning completion), FA4 (Frequency arrival type 4 - over-frequency 2), FA5 (Frequency arrival type 5 - at-frequency 2), OL2 (Overload notice advance signal 2), FBV (PID feedback comparison), NDc (communication line disconnection), LOG1 (logical operation result 1), LOG2 (logical operation result 2), LOG3 (logical operation result 3), LOG4 (logical operation result 4), LOG5 (logical operation result 5), LOG6 (logical operation result 6), WAC (capacitor life warning), WAF (cooling fan speed drop), FR (starting contact signal), OHF (heat sink overheat warning), LOC (low-current indication signal), MO1 (general-purpose output 1), MO2 (general-purpose output 2), MO3 (general-purpose output 3), MO4 (general-purpose output 4), MO5 (general-purpose output 5), MO6 (general-purpose output 6), IRDY (inverter ready), FWR (forward rotation signal), RVR (reverse rotation signal), MJA (major failure signal), Terminals 11-13 or 11-14 automatically configured as AC0-AC2 or AC0-AC3 per alarm code output selection |
|  | Intelligent monitor output terminals | Analog voltage monitor, analog current monitor (8-bit resolution), and PWM output, on terminals [AM], [AMI], [FM] |
| Display monitor |  | Output frequency, output current, motor torque, scaled value of output frequency, trip history, I/O terminal condition, electrical power and other parameters |
| Other user-settable parameters |  | V/F free-setting (up to 7 points), freq. upper/lower limit, freq. jump, accel/decel curve selection, manual torque boost value and freq. adjustment, energy saving operation, analog meter tuning, start frequency, carrier frequency, electronic thermal protection level, external frequency output zero/span reference, external frequency input bias start/ end, analog input selection, retry after trip, restart after instantaneous power failure, various signal outputs, reduced voltage start, overload restriction, default value setting (US, Europe, Japan), automatic deceleration at power failure, AVR function, fuzzy accel/decel, auto-tuning (on-line/off-line), high-torque multi-motor operation (sensorless vector control of two motors by one inverter) |
| Protective functions |  | Over-current, overload, braking resistor overload, over voltage, EEPROM error, undervoltage error, CT (current transformer) error, CPU error, external trip, USP error, ground fault, input over voltage, instantaneous power failure, expansion card 1 error, expansion card 2 error, inverter thermal trip, phase failure detection, IGBT error, thermistor error |
| Environment | Temperature (*9) | Operating (ambient): -10 to $50^{\circ} \mathrm{C} /$ Storage: -20 to $65^{\circ} \mathrm{C}$ |
|  | Humidity | 20 to $90 \%$ relative humidity (non-condensing) |
|  | Vibration *10 | Models SJ700-004xxx to $220 \mathrm{xxx}: 5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10$ to 55 Hz <br> Models SJ700-300xx to $1500 \mathrm{xxx}: 2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10$ to 55 Hz <br> Models SJ700-3150xx to 4000xxx: $1.96 \mathrm{~m} / \mathrm{s}^{2}(0.2 \mathrm{G}), 10$ to 55 Hz |
|  | Location | Altitude $1,000 \mathrm{~m}$ or less, indoors (no corrosive gasses or dust) |
| Coating color |  | Gray |
| Accessories | Feedback expansion card | SJ-FB (vector control loop speed sensor) |
|  | Digital input exp. card | SJ-DG (4-digit BCD / 16-bit binary) |
|  | DeviceNet expansion card | Option to support the open-network DeviceNet function |
|  | LonWorks expansion card | Option to support the open-network LonWorks function |
|  | Profibus-DP option | Option to support the open-network Profibus-DP function |
|  | Other optional accessories | EMI filter, AC reactor, DC reactor, radio noise filter, braking resistors, braking units, LCR filter, communication cables |
| Operator input devices |  | OPE-SRE (4-digit LED with potentiometer) / OPE-S (4-digit LED w/o potentiometer), Optional: OPE-SR (4-digit LED with potentiometer, Japanese/English overlay), SRW-0EX Multilingual operator with copy function (English, Spanish, French, German, Italian, and Portuguese) |

Signal Ratings Detailed ratings are in "Specifications of Control and Logic Connections" on page 4-9.

| Signal / Contact | Ratings |
| :---: | :---: |
| Built-in power for inputs | 24VDC supply, 100 mA maximum |
| Intelligent (programmable) logic inputs | 27 VDC maximum, $4.7 \mathrm{k} \Omega$ input impedance |
| Intelligent (programmable) logic outputs | Open collector type, 50mA max. ON state current, 27 VDC maximum OFF state voltage |
| Thermistor input | Minimum thermistor power 100 mW |
| PWM output | 0 to $10 \mathrm{VDC}, 1.2 \mathrm{~mA}$ max., $50 \%$ duty cycle |
| Voltage analog output | 0 to 10VDC, 2 mA max. |
| Current analog output | $4-20 \mathrm{~mA}$, nominal load impedance $250 \Omega$ |
| Analog input, current | 4 to 19.6 mA range, 20 mA nominal |
| Analog input, voltage unipolar | 0 to 9.6 VDC range, 10VDC nominal, 12VDC max., input impedance $10 \mathrm{k} \Omega$ |
| Analog input, voltage bipolar | -9.6 to 9.6 VDC range, $\pm 10 \mathrm{VDC}$ nominal, $\pm 12 \mathrm{VDC} \mathrm{max.} ,\mathrm{input} \mathrm{impedance} 10 \mathrm{k} \Omega$ |
| +10 V analog reference | 10VDC nominal, 10 mA maximum |
| Alarm relay, normally closed contacts | Maximum loads: 250VAC, 2A; 30VDC, 8A resistive load 250VAC, 0.2 A ; 30VDC, 0.6 A inductive load Minimum loads: 100 VAC, $10 \mathrm{~mA} ; 5 \mathrm{VDC}, 100 \mathrm{~mA}$ |
| Alarm relay, normally open contacts | 250VAC, 1A; 30VDC 1A max. resistive load / $250 \mathrm{VAC}, 0.2 \mathrm{~A} ; 30 \mathrm{VDC}, 0.2 \mathrm{~A}$ max. inductive load Min. loads: 100 VAC, $10 \mathrm{~mA} ; 5 \mathrm{VDC}, 100 \mathrm{~mA}$ |

## DCL Filter Specifications

Direct reactor filters (DCL) are available for the Hitachi high-capacity SJ7002 inverters, models -1850 HFU 2 to -4000 HFU 2 . The DCL specifications are in the following table.

| Item | DCL Specifications |  |  |
| :--- | :---: | :---: | :---: |
| DCL models, DCL-H-xxx | 185 | 315 | 400 |
| Rated current (A) | 515.0 | 680 | 1042 |
| Insulation class | Type H |  |  |
| Weight kg / lb. | 65 | 75 | 90 |

The maximum carrier frequency $\mathrm{F}_{\mathrm{c}}$ that provides full inverter rated output depends on the particular inverter model. However, you may operate an inverter at the maximum settable $F_{c}$ with an output derating. Refer to the table below for the carrier frequency values and output deratings.

| 200V Class Inverters |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity <br> $(\mathbf{k W})$ | Maximum <br> $\mathbf{F}_{\mathbf{c}}(\mathbf{k H z})$ | Derating at <br> $\mathbf{F c}=\mathbf{1 5} \mathbf{~ k H z}$ | Capacity <br> $(\mathbf{k W})$ | Maximum <br> $\mathbf{F}_{\mathbf{c}}(\mathbf{k H z})$ | Derating at <br> $\mathbf{F c}=\mathbf{1 5} \mathbf{k H z}$ |
| 0.4 | 15 | $100 \%$ | 15 | 12 | $95 \%$ (60.8A or less) |
| 0.75 | 15 | $100 \%$ | 18.5 | 10 | $90 \%$ (68.4A or less) |
| 1.5 | 15 | $100 \%$ | 22 | 7 | $70 \%(66.5 \mathrm{~A}$ or less) |
| 2.2 | 15 | $100 \%$ | 30 | 5 | $80 \%$ (96.8A or less) |
| $3.7 / 4.0$ | 15 | $100 \%$ | 37 | 10 | $75 \%$ (108.7A or less) |
| 5.5 | 15 | $100 \%$ | 45 | 5 | $70 \%(127.4 \mathrm{~A}$ or less) |
| 7.5 | 15 | $100 \%$ | 55 | 5 | $70 \%(154.0 \mathrm{~A}$ or less) |
| 11 | 12 | $90 \%(41.4 \mathrm{~A}$ or less) | - | - | - |


| 400V Class Inverters |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity <br> $(\mathbf{k W})$ | Maximum <br> $\mathbf{F}_{\mathbf{c}}(\mathbf{k H z})$ | Derating at <br> Maximum $\mathbf{F c}$ | Capacity <br> $(\mathbf{k W})$ | Maximum <br> $\mathbf{F}_{\mathbf{c}}(\mathbf{k H z})$ | Derating at <br> Maximum Fc |
| 0.75 | 15 | $100 \%$ | 37 | 8 | $80 \%$ (60.0A or less) $)$ |
| 1.5 | 15 | $100 \%$ | 45 | 9 | $75 \%$ (68.2A or less) |
| 2.2 | 15 | $100 \%$ | 55 | 6 | $60 \%$ (67.2A or less) |
| 3.7 | 15 | $100 \%$ | 75 | 6 | $85 \%$ (126.7A or less) |
| 5.5 | 15 | $100 \%$ | 90 | 4 | $75 \%$ (132.0A or less) |
| 7.5 | 15 | $100 \%$ | 110 | 6 | $70 \%(151.9 \mathrm{~A}$ or less) |
| 11 | 15 | $100 \%$ | 150 | 3 | $60 \%(156.0 \mathrm{~A}$ or less) |
| 15 | 14 | $95 \%(30.4 \mathrm{~A}$ or less) | 185 | 3 | $100 \%$ |
| 18.5 | 10 | $90 \%$ (34.2A or less) | 315 | 3 | $100 \%$ |
| 22 | 6 | $75 \%$ (36.0A or less) | 400 | 3 | $80 \%(640.0 \mathrm{~A}$ or less) |
| 30 | 10 | $75 \%$ (43.5A or less) | - | - | - |

NOTE: When replacing an SJ300 inverter combined with LCR filter, please check the type code of LCR filter and consult for compatibility ( 75 to 132 kW ).

## Introduction to Variable-Frequency Drives

The Purpose of Motor Speed Control for Industry

What is an Inverter?

Hitachi inverters provide accurate speed control for 3-phase AC induction motors. You connect $A C$ power to the inverter, and connect the inverter to the motor. Many applications can benefit from the use of variable-speed drives in several ways:

- Energy savings - HVAC
- Need to coordinate speed with an adjacent process - textiles and printing presses
- Need to control acceleration and deceleration (torque)
- Sensitive loads - elevators, food processing, pharmaceuticals

The term inverter and variable-frequency drive are related and somewhat interchangeable. An electronic drive for an AC motor controls the motor's speed by varying the frequency of the power sent to the motor.
An inverter, in general, is a device that converts DC power to AC power. The figure below shows how the variable-frequency drive employs an internal inverter. The drive first converts incoming AC power to DC through a rectifier bridge, creating an internal DC bus voltage. Then the inverter circuit converts the DC back to AC again to power the motor. The special inverter can vary its output frequency and voltage according to the desired motor speed.


The simplified drawing of the inverter shows three double-throw switches. In Hitachi inverters, the switches are actually IGBTs (isolated gate bipolar transistors). Using a commutation algorithm, the microprocessor in the drive switches the IGBTs ON and OFF at a very high speed to create the desired output waveforms. The inductance of the motor windings helps smooth out the pulses.

Torque and Constant Volts/ Hertz Operation

In the past, $A C$ variable speed drives used an open loop (scalar) technique to control speed. The constant-volts-per-hertz operation maintains a constant ratio between the applied voltage and the applied frequency. With these conditions, AC induction motors inherently delivered constant torque across the operating speed range. For some applications, this scalar technique was adequate.
Today, with the advent of sophisticated microprocessors and digital signal processors (DSPs), it is possible to control the speed and torque of AC induction motors with unprecedented accuracy. The SJ7002 utilizes these devices to perform complex mathematical calculations required to achieve superior performance. The technique is referred to as sensorless vector control. It allows the drive to continuously monitor its output voltage and current, and their relationship to each other. From this it mathematically calculates two vector currents. One
vector is related to motor flux current, and the other to motor torque current. The ability to separately control these two vectors is what allows the SJ7002 to deliver extraordinary lowspeed performance and speed control accuracy.

Inverter Input and The Hitachi SJ7002 Series of inverters includes two sub-groups: the 200V class and the 400 V Three-Phase Power class inverters. The drives described in this manual may be used in either the United States or Europe, although the exact voltage level for commercial power may be slightly different from country to country. Accordingly, a 200 V class inverter requires (nominal) 200 to 240 VAC , and a 400 V class inverter requires from 380 to 480 VAC . All SJ7002 inverters require three-phase input power, whether 200 V or 400 V class.

TIP: If your application only has single phase power available, refer to the Hitachi SJ100 Series inverters. SJ100 inverters of 3HP or less can accept single phase input power.

The common terminology for single phase power is Line (L) and Neutral (N). Three-phase power connections are usually labeled Line 1 (L1), Line 2 (L2) and Line 3 (L3). In any case, the power source should include a ground connection. That ground connection will need to connect to the inverter chassis and to the motor frame (see "Wire the Inverter Output to Motor" on page 2-26).

The AC motor must be connected only to the inverter's output terminals. The output terminals are uniquely labeled (to differentiate them from the input terminals) with the designations U/T1, V/T2, and W/T3. This corresponds to typical motor lead connection designations T1, T2, and T3. It is often not necessary to connect a particular inverter output to a particular motor lead for a new application. The consequence of swapping any two of the three connections is the reversal of the motor direction. In applications where reversed rotation could cause equipment damage or personnel injury, be sure to verify direction of rotation before attempting full-speed operation. For safety to personnel, you must connect the motor chassis ground to the ground connection at the bottom of the inverter housing.
Notice the three connections to the motor do not include one marked "Neutral" or "Return." The motor represents a balanced " $Y$ " impedance to the inverter, so there is no need for a separate return. In other words, each of the three "Hot" connections serves also as a return for the other connections, because of their phase relationship.
The Hitachi inverter is a rugged and reliable device. The intention is for the inverter to assume the role of controlling power to the motor during all normal operations. Therefore, this manual instructs you not to switch OFF power to the inverter while the motor is running (unless it is an emergency stop). Also, do not install or use disconnect switches in the wiring from the inverter to the motor (except thermal disconnect). Of course, safety-related devices such as fuses must be in the design to break power during a malfunction, as required by NEC and local codes.

## Intelligent Functions and Parameters

Much of this manual is devoted to describing how to use inverter functions and how to configure inverter parameters. The inverter is microproces-sor-controlled, and has many independent functions. The microprocessor has an on-board EEPROM for parameter storage. The inverter's front panel keypad provides access to all functions and parameters, which you can access through other devices as well. The general name for all these devices is the digital operator, or digital operator panel. Chapter 2 will show you how to get a motor running, using a minimal set of function commands or configuring parameters.

The optional read/write programmer will let you read and write inverter EEPROM contents from the programmer. This feature is particularly useful for OEMs who need to duplicate a particu-
 lar inverter's settings in many other inverters in assembly-line fashion.

In general, braking is a force that attempts to slow or stop motor rotation. So it is associated with motor deceleration, but may also occur even when the load attempts to drive the motor faster than the desired speed (overhauling). If you need the motor and load to decelerate quicker than their natural deceleration during coasting, we recommend installing a braking resistor. The dynamic braking unit (built into certain SJ7002 models) sends excess motor energy into a resistor to slow the motor and load (see "Introduction" on page 5-2 and "Dynamic Braking" on page 5-6 for more information). For loads that continuously overhaul the motor for extended periods of time, the SJ7002 may not be suitable (contact your Hitachi distributor).

The inverter parameters include acceleration and deceleration, which you can set to match the needs of the application. For a particular inverter, motor, and load, there will be a range of practically achievable accelerations and decelerations.

Velocity Profiles The SJ7002 inverter is capable of sophisticated speed control. A graphical representation of that capability will help you understand and configure the associated parameters. This manual makes use of the velocity profile graph used in industry (shown at right). In the example, the acceleration is a ramp to a set speed, and the deceleration is a decline to a stop.


Acceleration and deceleration settings specify the time required to go from a stop to maximum frequency (or visa versa). The resulting slope (speed change divided by time) is the acceleration or deceleration. An increase in output frequency uses the acceleration slope, while a decrease uses the deceleration slope. The accel or decel time a particular speed change depends on the starting and ending frequencies. However, the slope is constant, corresponding to the full-scale accel or decel time setting.

For example, the full-scale acceleration setting (time) may be 10 seconds-the time required to go from 0 to 60 Hz .

The SJ7002 inverter can store up to 16 preset speeds. And, it can apply separate acceleration and deceleration transitions from any preset to any other preset speed. A multispeed profile (shown at right) uses two or more preset speeds, which you can select via intelligent input terminals. This external control can apply any preset speed at any time. Alternatively, the selected speed is infinitely variable across the speed range. You can use the potentiometer control on the keypad for manual control. The drive accepts analog $0-10 \mathrm{~V}$ signals and $4-20 \mathrm{~mA}$ control signals as well.

The inverter can drive the motor in either direction. Separate FW and RV commands select the direction of rotation. The motion profile example shows a forward motion followed by a reverse motion of shorter duration. The speed presets and analog signals control the magnitude of the speed, while the FW and RV commands determine the direction before the motion starts.


Acceleration (time) setting


Multi-speed Profile


Bi-directional Profile

NOTE: The SJ7002 can move loads in both directions. However, it is not designed for use in servo-type applications that use a bipolar velocity signal that determines direction.

## Frequently Asked Questions

Q. What is the main advantage in using an inverter to drive a motor, compared to alternative solutions?
A. An inverter can vary the motor speed with very little energy loss, unlike mechanical or hydraulic speed control solutions. The resulting energy savings can often pay for the inverter in a relatively short time.
Q. The term "inverter" is a little confusing, since we also use "drive" and "amplifier" to describe the electronic unit that controls a motor. What does "inverter" mean?
A. The terms are used somewhat interchangeably in industry. Nowadays, the terms drive, variable-frequency drive, variable-speed drive, and inverter are generally used to describe electronic, microprocessor-based motor speed controllers. In the past, variable speed drive also referred to various mechanical means to vary speed. Amplifier is a term almost exclusively used to describe drives for servo or stepper motors.
Q. Although the SJ 7002 inverter is a variable speed drive, can I use it in a fixed-speed application?
A. Yes, sometimes an inverter can be used simply as a "soft-start" device, providing controlled acceleration and deceleration to a fixed speed. Other functions of the SJ7002 may be useful in such applications, as well. However, using a variable speed drive can benefit many types of industrial and commercial motor applications, by providing controlled acceleration and deceleration, high torque at low speeds, and energy savings over alternative solutions.
Q. Can I use an inverter and AC induction motor in a positioning application?
A. That depends on the required precision, and the slowest speed the motor must turn and still deliver torque. The SJ7002 inverter will deliver $200 \%$ rated torque while turning the motor at only 0.3 Hz . DO NOT use an inverter if you need the motor to stop and hold the load position without the aid of a mechanical brake (use a servo or stepper motion control system).
Q. Does the optional digital operator interface or the PC software (DOP Professional) provide features beyond what is available from the keypad on the unit?
A. Yes. However, note first that the same set of parameters and functions are equally accessible from either the unit's keypad or from remote devices. The DOP Professional PC software lets you save or load inverter configurations to or from a disk file. And, the hand-held digital operator provides hard-wired terminals, a safety requirement for some installations.
Q. Why does the manual or other documentation use terminology such as " 200 V class" instead of naming the actual voltage, such as " 230 VAC?"
A. A specific inverter model is set at the factory to work across a voltage range particular to the destination country for that model. The model specifications are on the label on the side of the inverter. A European 200V class inverter ("EU" marking) has different parameter settings than a USA 200V class inverter ("US" marking). The initialization procedure (see "Restoring Factory Default Settings" on page 6-16) can set up the inverter for European or US commercial voltage ranges.
Q. Why doesn't the motor have a neutral connection as a return to the inverter?
A. The motor theoretically represents a "balanced $Y$ " load if all three stator windings have the same impedance. The Y connection allows each of the three wires to alternately serve as input or return on alternate half-cycles.
Q. Does the motor need a chassis ground connection?
A. Yes, for several reasons. Most importantly, this provides protection in the event of a short in the motor that puts a hazardous voltage on its housing. Secondly, motors exhibit leakage currents that increase with aging. Lastly, a grounded chassis generally emits less electrical noise than an ungrounded one.
Q. What type of motor is compatible with the Hitachi inverters?
A. Motor type - It must be a three phase AC induction motor. Use an inverter-grade motor that has 800 V insulation for 200 V class inverters, or 1600 V insulation for 400 V class.
Motor size - In practice, it's better to find the right size motor for your application; then look for the inverter to match the motor.

NOTE: There may be other factors that will affect motor selection, including heat dissipation, motor operating speed profile, enclosure type, and cooling method.
Q. How many poles should the motor have?
A. Hitachi inverters can be configured to operate motors with $2,4,6$, or 8 poles. The greater the number of poles, the slower the top motor speed will be, but it will have higher torque at the base speed.
Q. Will I be able to add dynamic (resistive) braking to my Hitachi SJ7002 drive after the initial installation?
A. Yes. Models SJ700-004XXX through SJ700-220XXX have built-in dynamic braking units. You can add an external resistor to these models to improve braking performance. Models SJ700-300XXX through SJ700-4000XXX require you to add an external braking unit. The braking resistor connects to the external braking unit for those models. More information on dynamic braking is located in Chapter 5.
Q. How will I know if my application will require resistive braking?
A. For new applications, it may be difficult to tell before you actually test a motor/drive solution. In general, some applications can rely on system losses such as friction to serve as the decelerating force, or otherwise can tolerate a long decel time. These applications will not need dynamic braking. However, applications with a combination of a high-inertia load and a required short decel time will need dynamic braking. This is a physics question that may be answered either empirically or through extensive calculations.
Q. Several options related to electrical noise suppression are available for the Hitachi inverters. How can I know if my application will require any of these options?
A. The purpose of these noise filters is to reduce the inverter electrical noise so the operation of nearby electrical devices is not affected. Some applications are governed by particular regulatory agencies, and noise suppression is mandatory. In those cases, the inverter must have the corresponding noise filter installed. SJ700 models from $-004 \mathrm{XXX}(0.4 \mathrm{~kW})$ to $-1500 \mathrm{XXX}(150 \mathrm{~kW})$ have built-in EMC filters. Other applications may not need noise suppression, unless you notice electrical interference with the operation of other devices.
Q. The SJ7002 features a PID loop feature. PID loops are usually associated with chemical processes, heating, or process industries in general. How could the PID loop feature be useful in my application?
A. You will need to determine the particular main variable in your application the motor affects. That is the process variable (PV) for the motor. Over time, a faster motor speed will cause a faster change in the PV than a slow motor speed will. By using the PID loop feature, the inverter commands the motor to run at the optimal speed required to maintain the PV at the desired value for current conditions. Using the PID loop feature will require an additional sensor and other wiring, and is considered an advanced application.

## Inverter Mounting and Installation

In This Chapter....page

- Orientation to Inverter Features ..... 2
- Basic System Description ..... 5
- Step-by-Step Basic Installation ..... 6
- Powerup Test ..... $\underline{27}$
- Using the Front Panel Keypad ..... $\underline{27}$
- Emergency Stop Function ..... 37


## Orientation to Inverter Features

## Unpacking and Inspection

Please take a few moments to unpack your new SJ7002 inverter and perform these steps:

1. Look for any damage that may have occurred during shipping.
2. Verify the contents of the box include:
a. One SJ7002 inverter
b. One Instruction Manual (supplied by printed book for -FU2/-FF2 models, supplied on CR-ROM for -FE2 models)
c. One SJ7002 Quick Reference Guide
d. One packet of desiccant-discard (not for human consumption)
3. Inspect the specifications label on the front or side of the inverter. Make sure it matches the product part number you ordered.

Main Physical Features

The SJ7002 Series inverters vary in size according to the current output rating and motor size for each model number. All feature the same basic keypad and connector interface for consistent ease of use. The inverter construction has a heat sink at the back of the housing. The fans enhance heat sink performance. Mounting holes are pre-drilled in the heat sink for your convenience. Never touch the heat sink during or just after operation; it can be very hot.

The electronics housing and front panel are built onto the front of the heat sink. The front panel has three levels of physical access designed for convenience and safety:

- First-level access - for basic use of inverter and editing parameters during powered operation (power is ON)
- Second-level access - for wiring the inverter power supply or motor (power is OFF)
- Third-level access - for accessing the expansion bay for adding/removing expansion boards (power is OFF)

1. First-level Access - View the unit just as it came from the box as shown. The OPE-SRE or OPE-S digital operator keypad comes installed in the inverter. The four-digit display can show a variety of performance parameters. LEDs indicate whether the display units are Hertz, Volts, Amperes, or kW. Other LEDs indicate Power (external), and Run/Stop Mode and Program/Monitor Mode status. Membrane keys Run and Stop/Reset, and a Min/Max frequency control knob (OPE-SRE only) control motor operation. These controls and indicators are usually the only ones needed after the inverter installation is complete.
The FUNC., $\uparrow, \boxed{2}$, and STR keys allow an operator to change the inverter's functions and parameter values, or to select
 the one monitored on the 4-digit display. Note that some parameters may not be edited if the inverter is in Run mode.
2. Second-level access - First, ensure no power source of any kind is connected to the inverter. If power has been connected, wait 10 minutes after powerdown and verify the Charge Lamp indicator is OFF to proceed. Then locate the two screws at the bottom corners of the main front panel. Use a Phillips screwdriver to loosen the screws and tilt the cover outward for removal. (The screws are retained in the cover.)


Notice the large power terminals at the bottom of the wiring area. The rubber grommets below the power terminals are for wire entry/exit to the power source and motor. Never operate the inverter with the front panel removed.
The control terminals connect logic or analog signals for control and monitoring of the inverter. The nearby alarm relay provides both normally-open and normally-closed logic for interface to an external alarm. The alarm circuit may carry hazardous live voltages even when the main power to the inverter is OFF. So, never directly touch any terminal or circuit component.


WARNING: Be sure to wait 10 minutes after powerdown and verify the charge lamp indicator is OFF to proceed. Otherwise there is the risk of electric shock.
3. Third-level access - The SJ7002 provides for field installation of interface circuits. These circuits are on expansion cards, to be installed in the expansion bay. To access the expansion bay, you will need to remove the upper front panel. Use the latch to release the digital operator (the panel filler plate may remain). Remove the two retention screws the bottom corners of the upper front panel. Lift up at the bottom, then disengage the two hinge latches at the top.


The expansion bay has two sites for adding expansion cards. Each card connects via the interface connector, and mounts using three standoff screw locations. Further details on accessories are in Chapter 5. You may also refer to the instruction manual that comes with each type of expansion card.


The following sections will describe the system design and guide you through a step-by-step installation process. After the section on wiring, this chapter will show how to use the front panel keys to access functions and edit parameters.

## Basic System Description

A motor control system will obviously include a motor and inverter, as well as a breaker or fuses for safety. If you are connecting a motor to the inverter on a test bench just to get started, that's all you may need for now. But a system can also have a variety of additional components. Some can be for noise suppression, while others may enhance the inverter's braking performance. The figure and table below show a system with all the optional components you may need in your finished application.

| Name | Function |
| :--- | :--- |

NOTE: Some components are required for regulatory agency compliance (see Chapter 5 and Appendix D).

## Step-by-Step Basic Installation

This section will guide you through the following basic steps of installation:

1. Study the warnings associated with mounting the inverter.
2. Transport or lift the inverter (and DC reactor, if used) in a safe manner.
3. Select a suitable mounting location.

NOTE: If the installation is in an EU country, study the EMC installation guidelines in Appendix D.
4. Cover the inverter's top ventilation openings to prevent debris from falling inside.
5. Check the inverter mounting dimensions for footprint and mounting hole locations.
6. Study the caution and warning messages associated with wiring the inverter.
7. Connect wiring for the inverter power input.
8. Connect wiring to the motor.
9. Uncover the inverter's ventilation openings that were covered in Step 3.
10. Perform a powerup test.
11. Make observations and check your installation.

Step 1: Study the following caution messages associated with mounting the inverter. This is the time when mistakes are most likely to occur that will result in expensive rework, equipment damage, or personal injury.

Choosing a
Mounting Location


CAUTION: Be sure to install the unit on flame-resistant material such as a steel plate. Otherwise, there is the danger of fire.

CAUTION: Be sure not to place any flammable materials near the inverter. Otherwise, there is the danger of fire.

CAUTION: Be sure not to let the foreign matter enter vent openings in the inverter housing, such as wire clippings, spatter from welding, metal shavings, dust, etc. Otherwise, there is the danger of fire.

CAUTION: Be sure to install the inverter in a place that can bear the weight according to the specifications in the text (Chapter 1, Specifications Tables). Otherwise, it may fall and cause injury to personnel.

CAUTION: Be sure to install the unit on a perpendicular wall that is not subject to vibration. Otherwise, it may fall and cause injury to personnel.

CAUTION: Be sure not to install or operate an inverter that is damaged or has missing parts. Otherwise, it may cause injury to personnel.

CAUTION: Be sure to install the inverter in a well-ventilated room that does not have direct exposure to sunlight, a tendency for high temperature, high humidity or dew condensation, high levels of dust, corrosive gas, explosive gas, inflammable gas, grinding-fluid mist, salt air, etc. Otherwise, there is the danger of fire.

The position and orientation of the inverter are very important. Install the inverter vertically and securely with screws or bolts on a surface that is free from vibrations and that can bear the inverter's weight. If the inverter is not installed vertically, its cooling performance may be degraded and trip events or inverter damage may result. If the inverter requires an external DC reactor, do not install the reactor directly under the inverter.


SJ7002 Series inverter models -1850 hFx 2 to -4000 hFx 2 are very heavy. For example, the 315 kW inverter weighs about 463 lbs . ( 210 kg ). Therefore, be careful when loading and

Transport or Lift in Safe Manner transporting these inverters. Use the eyebolts on the inverter housing and frame to lift the inverter. The diagrams below show different lifting configurations to fit the orientations you may need.


Upright inverter lifting: Use eyebolts at top of inverter


Horizontal inverter lifting: Use eyebolts at front corners of inverter


DC reactor lifting: Use bolts at top of frame

Step 2: To summarize the caution messages-you will need to find a solid, non-flammable, vertical surface that is in a relatively clean and dry environment. In order to ensure enough room for air circulation around the inverter to aid in cooling, maintain the specified clearance around the inverter specified in the diagram.

## Ensure Adequate Ventilation



CAUTION: Be sure to maintain the specified clearance area around the inverter and to provide adequate ventilation. Otherwise, the inverter may overheat and cause equipment damage or fire.

Step 3: Before proceeding to the wiring section, it's a good time to temporarily cover the inverter's ventilation openings. Paper and masking tape are all that is needed. This will prevent harmful debris such as wire clippings and metal shavings from entering the inverter during installation.

Please observe this checklist while mounting the inverter:

1. The ambient temperature must be in the range of -10 to $40^{\circ} \mathrm{C}$. If the range will be up to $50^{\circ} \mathrm{C}$ (maximum rating), you will need to refer to derate the output current performance of the inverter.
2. Keep any other heat-producing equipment as far away from the inverter as possible.
3. When installing the inverter in an enclosure, maintain the clearance around the inverter and verify that its ambient temperature is within specification when the enclosure door is closed.
4. Do not open the main front panel door at any time during operation.


Step 4: Locate the applicable drawing on the following pages for your inverter.
Check Inverter Dimensions

Dimensions are given in millimeters (inches) format. Smaller models come equipped with NEMA1 adapter (conduit box) for wire entry for U.S. models (LFU and HFU). The NEMA 1 adapter is optional for larger models as indicated in the drawings.



NOTE: Be sure to use lock washers or other means to ensure screws do not loosen due to vibration.

Dimensional drawings, continued...


Model
SJ700 -300LFU2 -300HFU2/HFE2


Dimensional drawings, continued...


Exhaust

Model
SJ700 -550LFU2


Dimensional drawings, continued...


|  | Model |
| :--- | :--- |
| SJ700 | $-1100 \mathrm{HFU} 2 / \mathrm{HFE} 2$ |
|  | -1320 HFE 2 |
|  | -1500 HFU 2 |



Dimensional drawings, continued...


DC reactor model DCL-H-185


Dimensional drawings, continued...
NOTE: The following crimp terminals are included with UL Listed inverter models SJ700-1850HFU2/HFE2.

| Terminal <br> Type | Corresponding <br> StrandedWire Size, $\left(\mathbf{m m}^{\mathbf{2}}\right)$ | Corresponding <br> Screw Size |
| :---: | :--- | :---: |
| R38-8 | R26, 66-42, 42 | M8 |
| $38-16$ | R26, 66-42, 42 | M16 |
| R150-16 | $117,2-152,05$ | M16 |



Dimensional drawings, continued...


Dimensional drawings, continued...


Step 5: The wiring enters the inverter through an entry/exit plate. For plastic plates, remove the Wiring
knockout portions of the plate. For metal plates with rubber grommets, cut an " X " in the center of the grommet as shown. Be especially careful to avoid cutting into the thick outer ring, so that the wiring will have a cushion from contacting the metal plate.



Cut grommet(s) for use as shown

NOTE: Some inverter models will have a wiring box for NEMA rating compliance. Make sure the wire entry to the NEMA box also has protective cushion from chaffing of insulation.

Before proceeding, please study the caution and warning messages below.


WARNING: Use $75^{\circ} \mathrm{C} \mathrm{Cu}$ wire only or equivalent.

WARNING: Open Type Equipment. For models SJ700-750H to SJ700-4000H.

WARNING: A Class 2 circuit wired with Class 1 wire or equivalent.


WARNING: Suitable for use on a circuit capable of delivering not more than $100,000 \mathrm{rms}$ symmetrical amperes, 240 V maximum. For models with suffix L.

WARNING: Suitable for use on a circuit capable of delivering not more than $100,000 \mathrm{rms}$ symmetrical amperes, 480 V maximum. For models with suffix H .

HIGH VOLTAGE: Be sure to ground the unit. Otherwise, there is a danger of electric shock and/or fire.

HIGH VOLTAGE: Wiring work shall be carried out only by qualified personnel. Otherwise, there is a danger of electric shock and/or fire.

HIGH VOLTAGE: Implement wiring after checking that the power supply is OFF. Otherwise, you may incur electric shock and/or fire.

HIGH VOLTAGE: Do not connect wiring to an inverter or operate an inverter that is not mounted according the instructions given in this manual. Otherwise, there is a danger of electric shock and/or injury to personnel.

Determining Wire and Fuse Sizes

This section includes tables for 200 V class and 400 V class inverters (on the next page). The following notes will help you read the tables in this section:

- Locate the row corresponding to the motor size and particular inverter in your application. The maximum motor current determines the recommended wire sizes.
- The length column specifies that some inverters can optionally use a smaller wire gauge if the wires are shorter than 10 m and the inverter is located in an enclosure.
- Power Lines columns include wires connecting to terminals [R, S, T, U, V, W, P, PD, and N]. Only power input and motor leads will be fused: [R, S, T, U, V, and W]. The breaker ratings (GFI-ground fault interrupter) are slightly higher than fuse ratings to allow for nominal surges without tripping.
- The chassis ground columns list the Hitachi-recommended AWG and the minimal AWG for UL conformity.
- The optional external braking resistor wiring only applies to a few models that have a builtin braking unit. The other models use an optional external braking unit.
- Parallel wires increase effective wire gauge, and are denoted by " $\mid$ " in the tables.
- Signal Lines, not listed in these tables, connect to the removable logic connector. The recommended wire gauge for all wiring to the logic connector is 28 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$. Be sure to use shielded wire for any analog signals.

| Motor Output |  | 200V <br> Inverter <br> Models | Wiring *1 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Power Lines * 3 | Chassis Ground |  |  | Brake Res. |  |
| HP | kW |  | AWG | $\mathrm{mm}^{2}$ | Fuse (ULrated, class J, 600V) | Breaker (GFI type) *2 | AWG rec. | AWG, UL | $\mathrm{mm}^{2}$ | AWG | $\mathrm{mm}^{2}$ |
| 0.5 | 0.4 |  | SJ700-004LFUF2 | 20 | 1.25 | 10A | 10A | 20 | 20 | 1.25 | 20 | 1.25 |
| 1 | 0.75 | SJ700-007LFUF2 | 18 | 1.25 | 10A | 10A | 20 | 20 | 1.25 | 20 | 1.25 |
| 2 | 1.5 | SJ700-015LFUF2 | 14 | 2 | 10A | 10A | 14 | 14 | 2 | 14 | 2 |
| 3 | 2.2 | SJ700-022LFUF2 | 14 | 2 | 15A | 15A | 14 | 14 | 2 | 14 | 2 |
| 5 | 3.7 | SJ700-037LFUF2 | 10 | 3.5 | 20A | 20A | 10 | 10 | 3.5 | 10 | 3.5 |
| 7.5 | 5.5 | SJ700-055LFUF2 | 8 | 5.5 | 30A | 30A | 8 | 10 | 5.5 | 8 | 5.5 |
| 10 | 7.5 | SJ700-075LFUF2 | 6 | 8 | 40A | 40A | 8 | 10 | 8 | 6 | 8 |
| 15 | 11 | SJ700-110LFUF2 | 4 | 14 | 60A | 60A | 4 | 10 | 14 | 10 | 14 |
| 20 | 15 | SJ700-150LFUF2 | 2 | 22 | 80A | 80A | 3 | 8 | 22 | 8 | 22 |
| 25 | 18.5 | SJ700-185LFU2 | 1 | 30 | 100A | 100A | 3 | 8 | 22 | 8 | 30 |
| 30 | 22 | SJ700-220LFU2 | 1 | 38 | 125A | 125A | 2 | 8 | 30 | 6 | 38 |
| 40 | 30 | SJ700-300LFU2 | 2/0 | $\begin{gathered} 60 \text { or } \\ 22\|\mid 22 \end{gathered}$ | 150A | 150A | 2 | 6 | 30 | - | - |
| 50 | 37 | SJ700-370LFU2 | 4/0 | $\begin{gathered} 100 \text { or } \\ 38\|\mid 38 \end{gathered}$ | 175A | 175A | 1/0 | 6 | 38 | - | - |
| 60 | 45 | SJ700-450LFU2 | 4/0 | $\begin{gathered} 100 \text { or } \\ 38 \text { \|\| } 38 \end{gathered}$ | 225A | 225A | 3/0 | 6 | 38 | - | - |
| 75 | 55 | SJ700-550LFU2 | 2/0 \|| $2 / 0$ | $\begin{gathered} 150 \text { or } \\ 60\|\mid 60 \end{gathered}$ | 250A | 250A | 3/0 | 4 | 60 | - | - |

[^0]Determining wire and fuse sizes, continued...

| Motor Output |  | $\begin{gathered} 400 \mathrm{~V} \\ \text { Inverter Models } \end{gathered}$ | Wiring *1 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Power Lines *3 | Chassis Ground |  |  | Brake Res. |  |
| HP | kW |  | AWG/ kemil | mm ${ }^{2}$ | Fuse <br> (UL- <br> rated, <br> class J, <br> 600V) | Breaker ( GFI type) *2 | AWG/ <br> kcmil, rec. | AWG/ kcmil, UL | $\mathrm{mm}^{2}$ | AWG | $\mathrm{mm}^{2}$ |
| 0.5 | 0.75 |  | SJ700-007HFUF2/E | 20 | 1.25 | 10A | 10A | 20 | 20 | 1.25 | 20 | 1.25 |
| 1 | 1.5 | SJ700-015HFUF2/E | 18 | 2 | 10A | 10A | 18 | 18 | 2 | 18 | 2 |
| 2 | 2.2 | SJ700-022HFUF2/E | 16 | 2 | 10A | 10A | 18 | 18 | 2 | 18 | 2 |
| 3 | 4.0 | SJ700-040HFUF2/E | 14 | 2 | 15A | 15A | 18 | 18 | 2 | 18 | 2 |
| 7.5 | 5.5 | SJ700-055HFUF2/E | 12 | 3.5 *5 | 15A | 15A | 10 | 12 | $\begin{aligned} & 3.3 \\ & * 5 \end{aligned}$ | 10 | $\begin{aligned} & 3.5 \\ & * 5 \end{aligned}$ |
| 10 | 7.5 | SJ700-075HFUF2/E | 10 | 3.5 | 20A | 20A | 10 | 12 | 3.5 | 10 | 3.5 |
| 15 | 11 | SJ700-110HFUF2/E | 8 | 5.5 | 30A | 30A | 8 | 10 | 5.5 | 8 | 5.5 |
| 20 | 15 | SJ700-150HFUF2/E | 6 | 8 | 40A | 40A | 8 | 10 | 8 | 10 | 8 |
| 25 | 18.5 | SJ700-185HFU2/E | 6 | 14 | 50A | 50A | 4 | 10 | 14 | 10 | 14 |
| 30 | 22 | SJ700-220HFU2/E | 4 | 14 | 60A | 60A | 4 | 10 | 14 | 10 | 14 |
| 40 | 30 | SJ700-300HFU2/E | 3 | 22 | 70A | 70A | 3 | 10 | 22 | - | - |
| 50 | 37 | SJ700-370HFU2/E | 1 | 38 | 90A | 90A | 3 | 8 | 38 | - | - |
| 60 | 45 | SJ700-450HFU2/E | 1 \|| 1 * 6 | 38 | 125A | 125A | 1 | 8 | 38 | - | - |
| 75 | 55 | SJ700-550HFU2/E | 2/0 | 60 | 125A | 125A | 1 | 6 | 60 | - | - |
| 100 | 75 | SJ700-750HFU2/E | 1 \|| 1 * 6 | $\begin{gathered} 100 \text { or } \\ 38 \text { \|\| } 38 \end{gathered}$ | 175A | 175A | 3 | 8 | 38 | - | - |
| 125 | 90 | SJ700-900HFU2/E | 1 \|| 1 * 6 | $\begin{gathered} 100 \text { or } \\ 38 \text { \|\| } 38 \end{gathered}$ | 200A | 200A | 3 | 8 | 38 | - | - |
| 150 | 110 | SJ700-1100HFU2/E | 1/0 \|| 1/0 | $\begin{gathered} 150 \text { or } \\ 60\|\mid 60 \end{gathered}$ | 250A | 250A | 1 | 6 | 60 | - | - |
| 150 | 132 | $\begin{aligned} & \text { SJ700-1320HFE2, } \\ & \text { SJ700-1500HFU2, } \end{aligned}$ | $3 / 0$ \|| $3 \mid 0$ | 80 \|| 80 | 300A | 300A | 3/0 | 3/0 | 80 | - | - |
| 250 | 185 | SJ700-1850HFU2/E | $\begin{gathered} 300\|\mid \\ 300 \end{gathered}$ | $\begin{gathered} \hline 152 \\| \\ 152 \end{gathered}$ | 400A | 400A | 250 | 250 | 127 | - | - |
| 400 | 315 | SJ700-3150HFU2/E | $\begin{gathered} 500 \\| \\ 500 \end{gathered}$ | $\begin{gathered} 253 \\| \\ 253 \end{gathered}$ | 700A | 700A | 400 | 400 | 203 | - | - |
| 500 | 400 | SJ700-4000HFU2/E | $\begin{gathered} \hline 800 \\| \\ 800 \end{gathered}$ | $\begin{gathered} 405 \\| \\ 405 \end{gathered}$ | 1000A | 1000A | 600 | 600 | 304 | - | - |

Note 1: Field wiring must be made by a UL-listed and CSA certified ring lug terminal connector sized for the wire gauge involved. The connector must be fixed by using the crimping tool specified by the connector manufacturer.
Note 2: Be sure to consider the capacity of the circuit breaker to be used.
Note 3: Be sure to use a larger wire gauge if power line length exceeds $66 \mathrm{ft}(20 \mathrm{~m})$.
Note 4: Prepackaged (included) square washer is to be used when the bare wire is directly connected to terminal without using crimp contact (such as ring lug connector).
Note 5: When replacing J300-055HF or SJ300-055HFF2 inverter with SJ700-055HFF2, you may use power wiring size $2 \mathrm{~mm}^{2}$.
Note 6: Wire must be rated for operation up to $75^{\circ} \mathrm{C}$.

## Terminal Dimensions and Torque Specs



The following tables list the screw size of terminal and recommended torque for tightening for each of the SJ 7002 inverter models ( 400 V models are on the next page).

CAUTION: Fasten the screws with the specified fastening torque in the table below. Check for any loosening of screws. Otherwise, there is the danger of fire.

| 200V Class Inverters |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor <br> Output |  | Inverter Model | Screw size of terminal |  | Ring lug connector *1 | Torque |  |
| HP | kW |  | AWG-bolt | Metric |  | ft-lbs | $\mathrm{N}-\mathrm{m}$ |
| 0.5 | 0.4 | SJ700-004LFUF2 | 20-\#10 | M4 | 1.25-4 | 0.9 | 1.2 |
| 1 | 0.75 | SJ700-007LFUF2 | 20-\#10 | M4 | 1.25-4 | 0.9 | 1.2 |
| 2 | 1.5 | SJ700-015LFUF2 | 20-\#10 | M4 | 2-4 | 0.9 | 1.2 |
| 3 | 2.2 | SJ700-022LFUF2 | 20-\#10 | M4 | 2-4 | 0.9 | 1.2 |
| 5 | 3.7 | SJ700-037LFUF2 | 20-\#10 | M4 | 3.5-4 | 0.9 | 1.2 |
| 7.5 | 5.5 | SJ700-055LFUF2 | 8-\#12 | M5 | R5.5-5 | 1.8 | 2.4 |
| 10 | 7.5 | SJ700-075LFUF2 | 8-\#12 | M5 | R8-5 | 1.8 | 2.4 |
| 15 | 11 | SJ700-110LFUF2 | 4-1/4 | M6 | R14-6 | 3.0 | 4.0 |
| 20 | 15 | SJ700-150LFUF2 | 2-1/4 | M6 | 22-6 | 3.3 | 4.5 |
| 25 | 18.5 | SJ700-185LFU2 | 1-1/4 | M6 | 30-S6 | 3.3 | 4.5 |
| 30 | 22 | SJ700-220LFU2 | 1/0-5/16 | M8 | 38-8 | 6.0 | 8.1 |
| 40 | 30 | SJ700-300LFU2 | 2-5/16 | M8 | 60-8 | 6.0 | 8.1 |
| 50 | 37 | SJ700-370LFU2 | 1-5/16 | M8 *2 | 100-8 | 6.0 | 8.1 |
| 60 | 45 | SJ700-450LFU2 | 1-5/16 | M8 *2 | 100-8 | 6.0 | 8.1 |
| 75 | 55 | SJ700-550LFU2 | 2/0-1/2 | M10 | 150-10 | 14.5 | 19.6 |

Note 1: The recommended ring lug connector listing consists of wire size - screw size format. The wire sizes are in AWG or $\mathrm{mm}^{2}$ format. For AWG wire sizes, bolt sizes for the ring lug centers are: $\# 10, \# 12,1 / 4 ", 5 / 16$ ", and $1 / 2$ ". For metric wire sizes, bolt sizes for the ring lug centers are: $6=6 \mathrm{M}, 8=8 \mathrm{M}, 10=10 \mathrm{M}$.
Note 2: Prepackaged square washer is to be used when the bare wire is directly connected to terminal without using crimp contact (such as ring lug connector).
Note 3: $[\mathrm{N}]$ terminal for braking unit is common to $[\mathrm{N}]$ terminal of power lines.

TIP: AWG = American Wire Gauge. Smaller numbers represent increasing wire thickness. $\mathrm{kcmil}=1,000$ circular mils, a measure of wire cross-sectional area $\mathrm{mm}^{2}=$ square millimeters, a measure of wire cross-sectional area

Terminal dimensions and torque specs, continued...

| 400V Class Inverters |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor Output |  | Inverter Model | Power connector terminals | Screw size of terminal |  | Ring lug connector *1 | Torque |  |
| HP | kW |  |  | (AWG-bolt) | Metric |  | ft-lbs | N-m |
| 0.5 | 0.75 | SJ700-007HFUF2/E | (All) | 20-\#10 | M4 | 1.25-4 | 0.9 | 1.2 |
| 1 | 1.5 | SJ700-015HFUF2/E | (All) | 20-\#10 | M4 | 1.25-4 | 0.9 | 1.2 |
| 2 | 2.2 | SJ700-022HFUF2/E | (All) | 20-\#10 | M4 | 1.25-4 | 0.9 | 1.2 |
| 3 | 4.0 | SJ700-040HFUF2/E | (All) | 20-\#10 | M4 | 1.25-4 | 0.9 | 1.2 |
| 7.5 | 5.5 | SJ700-055HFUF2 | (All) | 8-\#12 | M5 | 5.5-5 | 1.8 | 2.4 |
| 10 | 7.5 | SJ700-075HFUF2 | (All) | 8-\#12 | M5 | 8-5 | 1.8 | 2.4 |
| 15 | 11 | SJ700-110HFUF2 | (All) | 4-1/4 | M6 | 14-6 | 3.0 | 4.0 |
| 20 | 15 | SJ700-150HFUF2/E | (All) | 6-1/4 | M6 | 8-6 | 3.3 | 4.5 |
| 25 | 18.5 | SJ700-185HFU2/E | (All) | 4-1/4 | M6 | 14-6 | 3.3 | 4.5 |
| 30 | 22 | SJ700-220HFU2/E | (All) | 4-1/4 | M6 | 14-6 | 3.3 | 4.5 |
| 40 | 30 | SJ700-300HFU2/E | (All) | 2-1/4 | M6 | 22-6 | 3.3 | 4.5 |
| 50 | 37 | SJ700-370HFU2/E | (All) | 1/0-5/16 | M8 *2 | 38-8 | 6.0 | 8.1 |
| 60 | 45 | SJ700-450HFU2/E | (All) | 1/0-5/16 | M8 *2 | 38-8 | 6.0 | 8.1 |
| 75 | 55 | SJ700-550HFU2/E | (All) | 2-5/16 | M8 *2 | 60-8 | 6.0 | 8.1 |
| 100 | 75 | SJ700-750HFU2/E | (All) | 1/0-1/2 | M10 | 100-10 | 14.8 | 20.0 |
| 125 | 90 | SJ700-900HFU2/E | (All) | 1/0-1/2 | M10 | 100-10 | 14.8 | 20.0 |
| 150 | 110 | SJ700-1100HFU2/E | (All) | 2/0-1/2 | M10 | 150-10 | 14.8 | 20.0 |
| 150 | 132 | $\begin{aligned} & \text { SJ700-1320HFE2, } \\ & \text { SJ700-1320HFU2 } \end{aligned}$ | (All) | 2/0-1/2 | M10 | 150-10 | 14.8 | 20.0 |
| 250 | 185 | $\underset{* 3}{\text { SJ700-1850HFU2/E }}$ | R, S, T, U, V, W | $127 \mathrm{~mm}^{2} \times 2$ | M16 | R150-16 | 55.3 | 75.0 |
|  |  |  | P, PD, N | $152 \mathrm{~mm}^{2} \times 2$ | M16 | R150-16 | 55.3 | 75.0 |
| 400 | 315 | SJ700-3150HFU2/E | R, S, T, U, V, W | $203 \mathrm{~mm}^{2} \times 2$ | M16 | 200-16 | 32.5 | 44.0 |
|  |  |  | P, PD, N | $253 \mathrm{~mm}^{2} \times 2$ | M16 | 325-16 | 55.3 | 75.0 |
| 500 | 400 | SJ700-4000HFU2/E | R, S, T, U, V, W | $304 \mathrm{~mm}^{2} \times 2$ | M12 | 325-12 | 32.5 | 44.0 |
|  |  |  | P, PD, N | $405 \mathrm{~mm}^{2} \times 2$ | M12 | *4 | 38.4 | 52.0 |

Note 1: The recommended ring lug connector listing consists of wire size - screw size format. The wire sizes are in AWG or $\mathrm{mm}^{2}$ format. For AWG wire sizes, bolt sizes for the ring lug centers are: $\# 10, \# 12,1 / 4 \prime, 5 / 16^{\prime \prime}$, and $1 / 2^{\prime \prime}$. For metric wire sizes, bolt sizes for the ring lug centers are: $6=6 \mathrm{M}, 8=8 \mathrm{M}, 10=10 \mathrm{M}$.
Note 2: Prepackaged (included) square washer is to be used when the bare wire is directly connected to terminal without using crimp contact (such as ring lug connector).
Note 3: For 1850HF model, use wires with the prepackaged (included) ring lug terminals when connecting the wires to the main circuit terminals.
Note 4: $[\mathrm{N}]$ terminal for braking unit is common to $[\mathrm{N}]$ terminal of power lines.

Wire the Inverter Input to a Supply

Step 6: In this step, you will connect wiring to the input of the inverter. All models have the same power connector terminals [ $\mathrm{R}(\mathrm{L} 1)]$, [S(L2)], and [T(L3)] for three-phase input. The three phases may be connected in any order, as they are isolated from chassis ground and do not determine motor direction of rotation. Please refer to the specifications label (on the front or side of the inverter) for the acceptable input voltage ranges!

NOTE: The wiring example to the right shows an SJ700-110LFU2 inverter. The terminal locations will vary, depending on the inverter model (see below). Note the use of ring lug connectors for a secure connection.

Use the terminal arrangement below corresponding to your inverter model.


NOTE: Be sure that the power is OFF before changing the jumper settings for $[\mathrm{P}] /[\mathrm{PD}]$ or for the EMC filter selection.

Inverter models: -004 to -037LFUF2, -007 to -037HFUF2/HFEF2


NOTE: For $-055 x x x$ and $-075 x x x$ (5.5-7.5kW) inverter models: The washer on the main terminal screw (R, S, T, PD, P, N, U, V, W, RB) has two cutouts. To prevent the cable clamping portion of crimp terminal from going under the washer, align the cutouts with the cable as shown below. Otherwise, you run the risk of a loose connection and fire.


Washer under terminal screw
(Terminal diagrams, continued....)


Inverter models: -150LFUF2 to 220LFU2, -150HFUF2 to -220HFU2/HFE2


Inverter models: -450LFU2



Inverter model: - 1850HFU2, HFE2

| $\mathrm{R}_{0}$ | $\mathrm{~T}_{0}$ |
| :--- | :--- |




Inverter model: -3150HFU2, HFE2


Inverter model: -4000HFU2, HFE2



The table below lists the nominal current that may leak from only the inverter when the internal EMC filter is enabled or disabled. Leakage current is in proportion to input power voltage and frequency. The values do not exclude current leakage from external devices and equipment (e.g., power cables). Inverter models from 75 kW to 132 kW does not have a switch to enable/ disable the internal EMC filter. This complies EMC directive C3 level in standard condition.

| Internal <br> EMC Filter <br> Status | Units | 200V Class Inverters <br> (Input voltage $=\mathbf{2 0 0 V A C , 5 0 ~ H z ) ~}$ |  |  |  | 400V Class Inverters <br> (Input voltage $=$ 400VAC, 50 Hz) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | kW | $\mathbf{0 . 4 - 3 . 7}$ | $\mathbf{5 . 5 - \mathbf { 1 1 }}$ | $\mathbf{1 5 - 3 7}$ | $\mathbf{4 5 - 5 5}$ | $\mathbf{. 7 5 - 3 . 7}$ | $\mathbf{5 . 5 - 1 1}$ | $\mathbf{1 5 - 3 7}$ | $\mathbf{4 5 - 5 5}$ | $\mathbf{7 5 - 1 3 2}$ |
| Disabled | $\sim \mathrm{mA}$ | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| Enabled | $\sim \mathrm{mA}$ | 2.5 | 48 | 23 | 23 | 5 | 95 | 56 | 56 | - |

NOTE: An inverter powered by a portable or emergency diesel power generator may result in a distorted power waveform, overheating the generator. In general, the generator capacity should be at least five times that of the inverter (kVA).

CAUTION: Be sure that the input voltage matches the inverter specifications:

- Three phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
- Three phase 380 to $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

CAUTION: Be sure not to power a three-phase-only inverter with single phase power. Otherwise, there is the possibility of damage to the inverter and the danger of fire.

CAUTION: Be sure not to connect an AC power supply to the output terminals. Otherwise, there is the possibility of damage to the inverter and the danger of injury and/or fire.


NOTE:
L1, L2, L3:
Three-phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Three-phase 380 to $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$


CAUTION: Be sure to install a fuse in each phase of the main power supply to the inverter. Otherwise, there is the danger of fire.

CAUTION: For motor leads, ground fault interrupter breakers and electromagnetic contactors, be sure to size these components properly (each must have the capacity for rated current and voltage). Otherwise, there is the danger of fire.

## 8 <br> Wire the Inverter Output to Motor

## Logic Control Wiring

Step 7: The process of motor selection is beyond the scope of this manual. However, it must be a three-phase AC induction motor. It should also come with a chassis ground lug. If the motor does not have three power input leads, stop the installation and verify the motor type. Other guidelines for wiring the motor include:

- Use an inverter-grade motor for maximum motor life ( 1600 V insulation).
- For standard motors, use an output filter if the wiring between the inverter and motor exceeds 10 meters in length.
Simply connect the motor to the terminals [U/T1], [V/T2], and [W/T3] indicated on the inverter to the right. This is a good time to connect the chassis ground lug on the drive as well. The motor chassis ground must also connect to the same point. Use a star ground (single-point) arrangement, and never daisychain the grounds (point-to-point).


Use the same wire gauge on the motor and chassis ground wiring as you used on the power input wiring in the previous step. After completing the wiring:

- Check the mechanical integrity of each wire crimp and terminal connection.
- Replace the front panel and secure the retention screw firmly.

After completing the initial installation and powerup test in this chapter, you may need to wire the logic signal connector for your application. For new inverter users/applications, we highly recommend that you first complete the powerup test in this chapter without adding any logic control wiring. Then you will be ready to set the required parameters for logic control as covered in Chapter 4, Operations and Monitoring.

Step 8: After mounting and wiring the inverter, remove any protective material covering the inverter ventilation openings from Step 3. This includes covers over the side ventilation ports as well as the fan outlet area.

CAUTION: Failure to remove all vent opening covers before electrical operation may result in damage to the inverter.


## Powerup Test

Step 9: After wiring the inverter and motor, you're ready to do a powerup test. The procedure that follows is designed for the first-time use of the drive. Please verify the following conditions before conducting the powerup test:

- You have followed all the steps in this chapter up to this step.
- The inverter is new, and is securely mounted to a non-flammable vertical surface
- The inverter is connected to a power source and motor.
- No additional wiring of inverter connectors or terminals has been done.
- The power supply is reliable, and the motor is a known working unit, and the motor nameplate ratings match the inverter ratings.
- The motor is securely mounted, and is not connected to any load.

If there are any exceptions to the above conditions at this step, please take a moment to take any measures necessary to reach this basic starting point. The specific goals of this powerup test are:

1. Verify that the wiring to the power supply and motor is correct.
2. Demonstrate that the inverter and motor are generally compatible.
3. Give a brief introduction to the use of the built-in operator keypad.

The powerup test gives you an important starting point to ensure a safe and successful application of the Hitachi inverter. We highly recommend performing this test before proceeding to the other chapters in this manual.

Pre-test and
Operational Precautions

The following instructions apply to the powerup test, or to any time the inverter is powered and operating. Please study the following instructions and messages before proceeding with the powerup test.

1. The power supply must have fusing suitable for the load. Check the fuse size chart presented in Step 5, if necessary.
2. Be sure you have access to a disconnect switch for the drive input power if necessary. However, do not turn OFF power to the inverter during its operation unless it is an emergency.
3. Turn the inverter's front panel potentiometer (if it exists) to the MIN position (fully counterclockwise).

CAUTION: The heat sink fins will have a high temperature. Be careful not to touch them. Otherwise, there is the danger of getting burned.

CAUTION: The operation of the inverter can be easily changed from low speed to high speed. Be sure to check the capability and limitations of the motor and machine before operating the inverter. Otherwise, there is the danger of injury.



Powering the Inverter

CAUTION: If you operate a motor at a frequency higher than the inverter standard default setting $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$, be sure to check the motor and machine specifications with the respective manufacturer. Only operate the motor at elevated frequencies after getting their approval. Otherwise, there is the danger of equipment damage and/or injury to personnel.

CAUTION: Check the following before and during the powerup test. Otherwise, there is the danger of equipment damage.

- Is the shorting bar between the [P] and [PD] terminals installed? DO NOT power or operate the inverter if the jumper is removed.
- Is the direction of the motor rotation correct?
- Did the inverter trip during acceleration or deceleration?
- Were the rpm and frequency meter readings as expected?
- Were there any abnormal motor vibrations or noise?

If you have followed all the steps, cautions and warnings up to this point, you're ready to apply power. After doing so, the following events should occur:

- The POWER LED will illuminate.
- The numeric (7-segment) LEDs will display a test pattern, then stop at 0.0.
- The $H z$ LED will be ON.

If the motor starts running unexpectedly or any other problem occurs, press the $S T O P$ key. Only if necessary should you remove power to the inverter as a remedy.

NOTE: If the inverter has been previously powered and programmed, the LEDs (other than the POWER LED) may illuminate differently than as indicated above. If necessary, you can initialize all parameters to the factory default settings. See "Restoring Factory Default Settings" on page 6-16.

## Using the Front Panel Keypad

Front Panel Introduction

Please take a moment to familiarize yourself with the keypad layout shown in the figure below.


The display is used in programming the inverter's parameters, as well as monitoring specific parameter values during operation. Many functions are applicable only during the initial installation, while others are more useful for maintenance or monitoring.

Parameter Editing The front panel controls and indicators are described as follows: and Controls

- Run/Stop LED - ON when the inverter output is ON and the motor is developing torque, and OFF when the inverter output is OFF (Stop Mode).
- Program/Monitor LED - This LED is ON when the inverter is ready for parameter editing (Program Mode). It is normally OFF when the parameter display is monitoring data (Monitor Mode). However, the PRG LED will be ON whenever you are monitoring the value of parameter D001. (When the keypad is enabled as the frequency source via A001 $=02$, you can edit the inverter frequency directly from D001 monitor display by using the Up/Down keys.)
- Run Key Enable LED - is ON when the inverter is ready to respond to the Run key, OFF when the Run key is disabled.
- Run Key - Press this key to run the motor (the Run Enable LED must be ON first). Parameter F004, Keypad Run Key Routing, determines whether the Run key generates a Run FWD or Run REV command.
- Stop/Reset Key - Press this key to stop the motor when it is running (uses the programmed deceleration rate). This key will also reset an alarm that has tripped.
- Potentiometer (OPE-SRE only) - allows an operator to directly set the motor speed when the potentiometer is enabled for output frequency control.
- Potentiometer Enable LED - ON when the potentiometer is enabled for value entry. (OPE-SRE only).
- Parameter Display - a 4-digit, 7-segment display for parameters and function codes.
- Display Units: Hertz/Volts/Amperes/kW/\% - These LEDs indicate the units associated with the parameter display. When the display is monitoring a parameter, the appropriate LED is ON. In the case of kW units, both Volts and Amperes LEDs will be ON. An easy way to remember this is that $\mathrm{kW}=(\mathrm{V} \times \mathrm{A}) / 1000$.
- Power LED - This LED is ON when the power input to the inverter is ON.
- Alarm LED - This LED is ON when an alarm condition has tripped the inverter. Clearing the alarm will turn this LED OFF again. See Chapter 6 for details on clearing alarms.
- Function Key - This key is used to navigate through the lists of parameters and functions for setting and monitoring parameter values.
- Up/Down ( $1 \uparrow, 2$ ) Keys - Use these keys alternately to move up or down the lists of parameter and functions shown in the display, and increment/decrement values.
- Store ( ©sir) ) Key - When the unit is in Program Mode and the operator has edited a parameter value, press the Store key to write the new value to the EEPROM. This parameter is then displayed at powerup by default. If you want to change the powerup default, navigate to a new parameter value and press the Store key.


Keys, Modes, and Purpose of the keypad is to provide a way to change modes and parameters. The term function Parameters
applies to both monitoring modes and parameters. These are all accessible through function
codes that are primarily 3 or 4 -character codes. The various functions are separated into related groups identifiable by the left-most character, as the table shows.

| Function <br> Group | Type (Category) of Function | Mode to Access | PGM LED <br> Indicator |
| :---: | :--- | :---: | :---: |
| "D" | Monitoring functions | Monitor | $\bigcirc$ or $\bigcirc$ |
| "F" | Main profile parameters | Program | $\bigcirc$ |
| "A" | Standard functions | Program | $\bigcirc$ |
| "B" | Fine tuning functions | Program | $\bigcirc$ |
| "C" | Intelligent terminal functions | Program | $\bigcirc$ |
| "H" | Motor constant functions | Program | $\bigcirc$ |
| "P" | Expansion card functions | Program | $\bigcirc$ |
| "U" | User-selectable menu functions | Monitor | $\bigcirc$ |
| "E" | Error codes | - | - |

For example, function "A004" is the base frequency setting for the motor, typically 50 Hz or 60 Hz . To edit the parameter, the inverter must be in Program Mode (PGM LED will be ON). You use the front panel keys to first select the function code "A004." After displaying the value for "A004," use the Up/Down ( $\AA$ or 2 ) keys to edit the value.

NOTE: The inverter 7-segment display shows lower case "b" and "d", meaning the same as the upper case letters "B" and "D" used in this manual (for uniformity "A to F").

The inverter automatically switches into Monitor Mode when you access "D" Group functions. It switches into Program Mode when you access any other group, because they all have editable parameters. Error codes use the "E" Group, and appear automatically when a fault event occurs. Refer to "Monitoring Trip Events, History, \& Conditions" on page 6-5 for error code details.

MONITOR PROGRAM


Keypad
Navigational Map

The SJ7002 Series inverter drives have many programmable functions and parameters. Chapter 3 will cover these in detail, but you need to access just a few items to perform the powerup test. The menu structure makes use of function codes and parameter codes to allow programming and monitoring with only a 4 -digit display and a few keys and LEDs. So, it is important to become familiar with the basic navigational map of parameters and functions in the diagram below. You can later use this map as a reference.


## Selecting Functions and Editing Parameters

In order to run the motor for the powerup test, this section will show how to:

- select the inverter's maximum output frequency to the motor
- select the keypad potentiometer as the source of motor speed command
- select the keypad as the source of the RUN command
- set the number of poles for the motor
- enable the RUN command

The following series of programming tables are designed for successive use. Each table uses the previous table's final state as the starting point. Therefore, start with the first and continue programming until the last one. If you get lost or concerned that some of the other parameters settings may be incorrect, refer to "Restoring Factory Default Settings" on page 6-16.

CAUTION: If you operate a motor at a frequency higher than the inverter standard default setting ( $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ ), be sure to check the motor and machine specifications with the respective manufacturer. Only operate the motor at elevated frequencies after getting their approval. Otherwise, there is the danger of equipment damage.

Setting the Motor Base Frequency -The motor is designed to operate at a specific AC frequency. Most commercial motors are designed for $50 / 60 \mathrm{~Hz}$ operation. First, check the motor specifications. Then follow the steps in the table below to verify the setting or correct for your motor. DO NOT set it for greater than $50 / 60 \mathrm{~Hz}$ unless the motor manufacturer specifically approves operation at the higher frequency.

| Action | Display | Func./Parameter |
| :---: | :---: | :---: |
| Press the FUNC. key. | d00 1 | Monitor functions |
| Press the 4 or keys until -> | A--- | "A" Group selected |
| Press the FUCC. key. | A00 1 | First "A" parameter |
| Press the $₫$ key twice. | A003 | Base frequency setting |
| Press the Func. key. | 60 <br> or <br> 50 | Default value for base frequency $\mathrm{US}=60 \mathrm{~Hz} \text {, Europe }=50 \mathrm{~Hz}$ |
| Press the 4 or key as needed. | $60$ | Set to your motor specs (your display may be different) |
| Press the STR key. | A003 | Stores parameter, returns to "A" Group list |

TIP: If you need to scroll through a function or parameter list, press and hold the 1 i or key to auto-increment through the list.

Select the Potentiometer for Speed Command - The motor speed may be controlled from the following sources:

- Potentiometer on front panel keypad (if present)
- Control terminals
- Remote panel

Then follow the steps in the table below to select the potentiometer for the speed command (the table resumes action from the end of the previous table).

| Action | Display | Func./Parameter |
| :---: | :---: | :---: |
| Press the key twice. | A00 1 | Speed command source setting |
| Press the Func. key. | 01 | $\begin{aligned} & 0=\text { potentiometer } \\ & 1=\text { control terminals (default }) \\ & 2=\text { keypad } \end{aligned}$ |
| Press the ${ }^{2}$ key. | $00$ | $0=$ potentiometer (selected) |
| Press the STR key. | A00 1 | Stores parameter, returns to "A" Group list |

Select the Keypad for the RUN Command - The RUN command causes the inverter to accelerate the motor to the selected speed. You can program the inverter to respond to either the control terminal signal or the keypad RUN key. Follow the steps in the table below to select the front panel RUN key as the source for the RUN Command (the table resumes action from the end of the previous table).

| Action | Display | Func./Parameter |
| :---: | :---: | :---: |
| Press the 4 key. | A002 | Run command source |
| Press the Func. key. | 01 | $\begin{aligned} & 1=\text { control terminals (default }) \\ & 2=\text { keypad } \end{aligned}$ |
| Press the key. | $02$ | $2=$ keypad (selected) |
| Press the STR key. | A002 | Stores parameter, returns to "A" Group list |

NOTE: When you press the STR key in the last step above (and the display = 02), the Run Enable LED above the RUN switch on the keypad will turn ON. This is normal, and does not mean the motor is trying to run. It means that the RUN key is now enabled. DO NOT press the RUN key at this time-finish out the programming exercise first.

Configure the Inverter for the Number of Motor Poles- The number of magnetic poles of a motor is determined by the motor's internal winding arrangement. The specifications label on the motor usually indicates its number of poles. For proper operation, verify the parameter setting matches the motor poles. Many industrial motors have four poles, corresponding to the default setting in the inverter.

Follow the steps in the table below to verify the motor poles setting and change it if necessary (the table resumes action from the end of the previous table.)

| Action | Display | Func./Parameter |
| :---: | :---: | :---: |
| Press the FUCC. key. | A--- | "A" Group selected |
| Press the $\$$ key three times. | H--- | "H" Group selected |
| Press the Fucc. key. | HOO | First "H" parameter |
| Press the $₫$ key five times. | H004 | Motor poles parameter |
| Press the Fucc. key. | 4 | $\begin{aligned} & 2=2 \text { poles } \\ & 4=4 \text { poles (default) } \\ & 6=6 \text { poles } \\ & 8=8 \text { poles } \end{aligned}$ |
| Press the 1 or key as needed. | $4$ | Set to match your motor (your display may be different) |
| Press the STR key. | $\mathrm{HOO4}$ | Stores parameter, returns to " H " Group list |

This step concludes the parameter setups for the inverter. You are almost ready to run the motor for the first time!

TIP: If you became lost during any of these steps, first observe the state of the PRG LED. Then study the "Keypad Navigational Map" on page 2-31 to determine the current state of the keypad controls and display. As long as you do not press the STR key, no parameters will be changed by keypad entry errors. Note that power cycling the inverter will not cause it to reset to a particular programming state.

The next section will show you how to monitor a particular parameter from the display. Then you will be ready to run the motor.

## Monitoring Parameters with the Display

Running the Motor

After using the keypad for parameter editing, it's a good idea to switch the inverter from Program Mode to Monitor Mode. This will turn out the PRG LED, and the Hertz, Volt, Ampere, or \% LED indicates the display units.


For the powerup test, monitor the motor speed indirectly by viewing the inverter's output frequency. The output frequency must not be confused with base frequency $(50 / 60 \mathrm{~Hz})$ of the motor, or the carrier frequency (switching frequency of the inverter, in the kHz range). The monitoring functions are in the "D" list, located near the top left of the diagram in the "Keypad Navigational Map" on page 2-31.
Output frequency (speed) monitor - Resuming the keypad programming from the previous table, follow the steps in the table below.

| Action | Display | Func./Parameter |
| :---: | :---: | :---: |
| Press the FUNC. key. | $\mathrm{H}-\mathrm{-}$ | "H" Group selected |
| Press the key. | d00 1 | Output frequency selected |
| Press the FUNC. key. | 0.00 | Output frequency displayed |

When the d001function code appeared, the PRG LED went OFF. This confirms the inverter is no longer in programming mode, even while you are selecting the particular monitoring parameter. After pressing the FUNC. key, the display shows the current speed (is zero at this point).

If you have programmed all the parameters up to this point, you're ready to run the motor! First, review this checklist:

1. Verify the Power LED is ON. If not, check the power connections.
2. Verify the Run Key Enable LED is ON. If not, review the programming steps to find the problem.
3. Verify the PRG LED is OFF. If it is ON, review the instructions above.
4. Make sure the motor is disconnected from any mechanical load.
5. Turn the potentiometer to the MIN position (completely counterclockwise).
6. Now, press the RUN key on the keypad. The RUN LED will turn ON.
7. Slowly increase the potentiometer setting in clockwise fashion. The motor should start turning when the indicator is in the 9:00 position and beyond.
8. Press the STOP key to stop the motor rotation.

11
Powerup Test Observations and Summary

Step 10: Reading this section will help you make some useful observations when first running the motor.
Error Codes - If the inverter displays an error code (LED format is " $E-$-"), see "Monitoring Trip Events, History, \& Conditions" on page 6-5 to interpret and clear the error.
Acceleration and Deceleration - The SJ7002 inverter has programmable acceleration and deceleration values. The test procedure left these at the default value, 10 seconds. You can observe this by setting the potentiometer at about half speed before running the motor. Then press RUN, and the motor will take 5 seconds to reach a steady speed. Press the STOP key to see a 5 second deceleration to a stop.
State of Inverter at Stop - If you adjust the motor's speed to zero, the motor will slow to a near stop, and the inverter turns the outputs OFF. The high-performance SJ 7002 can rotate at a very slow speed with high torque output, but not zero (must use servo systems with position feedback for that feature). This characteristic means you must use a mechanical brake for some applications.
Interpreting the Display - First, refer to the output frequency display readout. The maximum frequency setting (parameter A004) defaults to 50 Hz or 60 Hz (Europe and United States, respectively) for your application.
Example: Suppose a 4-pole motor is rated for 60 Hz operation, so the inverter is configured to output 60 Hz at full scale. Use the following formula to calculate the RPM.

$$
\text { RPM }=\frac{\text { Frequency } \times 60}{\text { Pairs of poles }}=\frac{\text { Frequency } \times 120}{\# \text { of poles }}=\frac{60 \times 120}{4}=1800 \mathrm{RPM}
$$

The theoretical speed for the motor is 1800 RPM (synchronous speed). However, an induction motor cannot generate torque unless its shaft turns at a slightly different speed. This difference is called slip. So it's common to see a rated speed of approximately 1750 RPM on a 60 Hz , 4-pole motor. Using a tachometer to measure shaft speed, you can see the difference between the inverter output frequency and the actual motor speed. The slip increases slightly as the motor's load increases. This is why the inverter output value is called "frequency," since it is not exactly equal to motor speed. You can program the inverter to display output frequency in units more directly related to the load speed by entering a constant (discussed more in depth on page 3-45).

## Run/Stop Versus Monitor/Program Modes -

 The Run LED on the inverter is ON in Run Mode, and OFF in Stop Mode. The Program LED is ON when the inverter is in Program Mode, and OFF for Monitor Mode. All four mode combinations are possible. The diagram to the right depicts the modes and the mode transitions via keypad.

NOTE: Some factory automation devices such as PLCs have alternate Run/Program modes; the device is in either one mode or the other. In the Hitachi inverter, however, Run Mode alternates with Stop Mode, and Program Mode alternates with Monitor Mode. This arrangement lets you program some values while the inverter is operating-providing flexibility for maintenance personnel.

## Emergency Stop Function

Introduction

## Inverter Configuration



The SJ700 series inverter has the function of "uncontrolled stopping by removal of motor power" in accordance with Stop Category 0 defined by EN60204-1. The inverter is also designed to comply with Safety Category 3 of EN954-1. This function is generally called Safe Stop function. The emergency stop function shuts off the inverter output (i.e. stops the switching operation of the main circuit elements) in response to a command from a hardware circuit via an intelligent input terminal without the operation by internal CPU software.
Carefully note the following points when installing or using the Emergency Stop Function:

- The emergency stop function does not electrically shut off the inverter but merely stops the switching operation of the main circuit elements. Therefore, do not touch any terminals of the inverter or any power lines, e.g., motor cables. Otherwise, electric shock, injury, or ground fault may result.
- All systems that include an inverter must comply with the requirements of EN60204-1 (safety of machinery) and other applicable standards. You must confirm the contents of standards applicable to your system.
- Before installing a system using Safe Stop function, you must fully examine whether Safe Stop function and the safety category to be applied are adequate for your system. For details, refer to the standards required for your system.
- Every system must be configured with an inverter, a motor, and an external shutoff device. The external shutoff device must at least comply with Safety Category 3 of EN954-1.
- Safe Stop function is not intended for electrical insulation between the inverter and motor. If necessary, connect a shut off device (e.g., contactor) to the motor connection cable.
- Safe Stop function is not designed to prevent malfunctions in drive process control and application functions.
- Carefully note that digital outputs (i.e., relay and open collector outputs) are not regarded as the safety-related signals described here. The signals output from externally installed safety relays must be used for the safety-related control circuits installed for your system.

To enable the emergency stop function, set the slide lever of slide switch SW1 to ON. The factory default SW1 setting is OFF (Emergency Stop disabled).

NOTE: Before operating slide switch SW1, make sure that the input power supply is off.

NOTE: Carefully note that improperly turning slide switch SW1 ON or OFF will automatically change function assignments to the control terminals of the inverter.


When the emergency stop function is enabled, intelligent input terminals [1] and [3] are used exclusively for this function, and no other functions can be assigned to these terminals. Even if other functions have been assigned to these terminals, these are automatically disabled and these terminals are used exclusively for the emergency stop function.
Terminal [1] function - This terminal always serves as the "a" (N.O.) contact for the reset [RS] signal. This signal resets the inverter and releases the inverter from the trip due to emergency stop (error code E37).

Terminal [3] function - This terminal always serves as the "b" (N.C.) contact for the emergency stop [EMR] signal. This signal shuts off the inverter output without the operation by internal CPU software. This signal makes the inverter trip due to emergency stop (error code E37).

NOTE: If intelligent input terminal [3] is left unconnected, the cable connected to the terminal is disconnected, or the signal logic is improper, the inverter trips due to emergency stop (E37). If this occurs, check and correct the wiring and signal logic, and then input the reset [RS] signal. Only the reset [RS] signal input from intelligent input terminal [1] can release the inverter from tripping due to emergency stop (E37). The inverter cannot be released from the E37 trip status by any operation from the digital operator.

| SW1 Switch Setting | Intelligent input terminal [1] |  |  |  | Intelligent input terminal [3] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Function selection (normally C001) |  | a/b (N.O./N.C.) <br> selection (use C011) *1 |  | Function selection (normally C003) |  | a/b (N.O./N.C.) selection (use C013) *1, *2 |  |
| OFF - Emergency Stop disabled (factory setting) | User selectable *4 |  |
|  | Factory setting | [RS], code 18 | Factory setting | $\begin{aligned} & \text { N.O., } \\ & \text { code } 00 \end{aligned}$ | Factory setting | $\begin{gathered} \hline \text { [JG], } \\ \text { code } 06 \end{gathered}$ | Factory setting | $\begin{aligned} & \text { N.O., } \\ & \text { code } 00 \end{aligned}$ |
| ON - Emergency Stop enabled | Automatic assignment of functions to intelligent input terminals [1] and [3] and the terminal assigned [RS] (code 18) *3 |  |  |  |  |  |  |  |
|  | Fixed (cannot be changed) | [RS], code 18 | Fixed (cannot be changed) | $\begin{aligned} & \text { N.O., } \\ & \text { code } 00 \end{aligned}$ | Fixed (cannot be changed) | [EMR], code 64 | Fixed (cannot be changed) | $\begin{aligned} & \text { N.C., } \\ & \text { code } 01 \end{aligned}$ |
| ON (after set to OFF once) Emergency Stop disabled *3, *5 | User selectable *4 |  |
|  | Setting retained when SW1 is set ON | [RS], code 18 | Setting retained when SW1 is set ON | $\begin{aligned} & \text { N.O., } \\ & \text { Node } 0 \end{aligned}$ | Released from emergency stop function | (No function assigned) | Setting retained when SW1 is set ON | $\begin{aligned} & \text { N.C., } \\ & \text { code } 01 \end{aligned}$ |

Note 1: When function [RS] (code 18) is assigned to the input terminal, "a/b (N.O./N.C.)" selection is always 00 (N.O.).
Note 2: When terminal setting C003 is [EMR] (code 64), terminal setting C013 is always 01 (N.C.).
Note 3: If function [RS] (code18) has been assigned to an intelligent input terminal other than intelligent input terminals [1] and [3] before slide switch SW1 is set to ON, the input terminal setting for that terminal is automatically changed to NO (no function assigned) when slide switch SW1 is set to ON. This prevents any duplication of terminal functions. Even if slide switch SW1 is subsequently turned OFF, the original function setting for the terminal will not be restored. If necessary, the original function will have to be reassigned to the terminal.

Example - If slide switch SW1 is set to ON when function [RS] (code18) has been assigned to input terminal 2 (by terminal setting C002), terminal setting C002 is changed to NO (no function assigned), and function [RS] (code 18) is assigned to input terminal 1 (by terminal setting C001). Even if slide switch SW1 is subsequently
turned OFF, terminal [2] function C002 and terminal [1] function C001 will remain as NO (no function assigned) and [RS] (code 18), respectively.
Note 4: Function [EMR] (code 64) cannot be assigned to input terminal 3 by an operation from the digital operator. The function is automatically assigned to the terminal when slide switch SW1 is set to ON.
Note 5: After slide switch SW1 has been set to ON once, function assignments to intelligent input terminals [1] and [3] are not returned to their original assignments. If necessary, reassign original functions to the intelligent input terminals.

Copying Inverter Data

Note that data from an inverter configured for the emergency stop function can affect copy operations when using an optional operator (SRW or SRW-EX).

If operator data is copied to a SJ700 series inverter that has slide switch SW1 in the ON position from another SJ700 series inverter whose slide switch SW1 is OFF or an SJ300 series inverter, the digital operator on your SJ700 series inverter may display [R-ERROR COPY ROM] for a moment. This event may occur because the data on intelligent input terminals [1] and [3] cannot be copied since, on your inverter, exclusive functions have already been assigned to intelligent input terminals [1] and [3] due to the slide switch SW1 setting to ON. Note that other data is copied. If this event occurs, check the settings on both copy-source and copy-destination inverters.

NOTE: To use the copied data in inverter operation, power OFF and ON again after the copy operation is complete.

Safety Categories The following Safety Categories are defined by EN954-1 (JIS B 9705).

| Category | Safety requirement | System behavior | Principle for <br> achieving <br> safety |
| :---: | :--- | :--- | :--- |
| B | Components, safety-related parts of control <br> system, and protective equipment must be <br> designed, manufactured, selected, assembled, <br> and combined in accordance with related <br> standards to ensure resistance to the anticipated <br> adverse effects of faults. | A defect (fault) may cause a loss <br> of the safety function. | Characterized <br> mainly by the <br> selection of <br> components |
| 1 | The requirements of Category B must be <br> applied. Proven components and safety <br> principles must be applied. | A defect (fault) may cause a loss <br> of the safety function. However, <br> the probability of loss is less than <br> that specified for Category B. | - A defect (fault) occurring <br> during checking may cause a <br> loss of the safety function. <br> A loss of the safety function is <br> detected by checking. |
| 2 | The requirements of Category B and proven <br> safety principle specifications must be applied. <br> The safety function must be checked by the <br> machine control system at appropriate inter- <br> vals. The requirements of category B and <br> proven safety principle specifications must be <br> applied. Safety-related parts must be designed <br> to meet the following requirements: <br> Any single defect (fault) in a part must not <br> cause any loss of the safety functions. | - If a single defect (fault) occurs, it must <br> always be detected when the safety function <br> can be reasonably implemented. | Characterized <br> mainly by the <br> structure |


| Category | Safety requirement | System behavior | Principle for <br> achieving <br> safety |
| :---: | :--- | :--- | :--- |
| 3 | The requirements of category B and proven <br> safety principle specifications must be applied. <br> Safety-related parts must be designed to meet <br> the following requirements: <br> - The safety function always operates when a <br> single defect (fault) occurs. <br> Each single defect (fault) is eventually <br> detected to prevent the loss of the safety <br> function. | - The safety function always <br> operates when a single defect <br> (fault) occurs. <br> Almost all defects (faults) are <br> detected. <br> Accumulation of undetected <br> defects (faults) may cause a <br> loss of the safety function. |  |
| 4 | The requirements of category B and proven <br> safety principle specifications must be applied. <br> Safety-related parts must be designed to meet <br> the following requirements: <br> - Any single defect (fault) in a part must not <br> cause any loss of the safety function. <br> - If a single defect (fault) occurs, it must <br> be detected when or before the next <br> operation request is made to the safety <br> function. If single defects (faults) cannot <br> be detected, the accumulation of defects <br> (faults) must not cause any loss of the <br> safety function. | The safety function always <br> operates when a single defect <br> (fault) occurs. <br> Each single defect (fault) is <br> eventually detected to prevent <br> the loss of the safety function. | Characterized mainly <br> by the structure |

NOTE: The system manufacturer is responsible for selecting the level of risk factors in accordance with EN954-1. (Stop categories are defined by EN60204-1.)

Wiring Examples The examples of wiring shown below are based on the three stop categories compliant with European Machinery Directive EN60204-1.

- Category 0: (Uncontrolled) stopping by immediate removal of power to machine actuators
- Category 1: Stopping by removal of power after controlled stopping with power to machine actuators retained
- Category 2: Controlled stopping with power to machine actuators retained


NOTE: The Safe Stop function must be activated at least once a year for preventive maintenance purposes.

NOTE: Before preventive maintenance, the machine must be turned off. If the power supply to the motor is not turned off during testing, the Safe Stop function will not operate. In such case, the inverter must be replaced.

The examples of wiring below are intended to implement the Safe Stop function through safety input of the EMR signal by the method complying with EN954-1 Category 3.

- The emergency stop circuit is monitored via an external safety relay (safety switching device).
- One safety relay (safety switching device) can be used for multiple inverters.



NOTE: The safety relay (safety switching device) used in these examples is the PNOZ X5 made by Pilz. Use a safety switching device equivalent to the PNOZ X5.

- S13 Emergency stop button - Switches the inverter into safe stop mode and the motor into free-running status
- S14 Start/stop button - Switches the inverter into safe stop mode by [EMR] signal input to a digital input terminal and sets the motor into free-running status. (This operation corresponds to EN60204-1 Stop Category 0.)
- Safe stop mode continues as long as the [EMR] signal is input or until the [RS] signal is input even after the [EMR] signal is canceled.
- To use the inverter for an application in which a mechanical brake (such as a crane or elevator) must be controlled, the safety output from an external safety relay must be serially connected to the brake control circuit.

NOTE: The cables used for safety relay wiring, the EMR signal, and RS signal must be shielded coaxial cables, such as type RG174/U complying with MIL-C17 (made by LAPP) or KX3B complying with NF C 93-550. Each cable must be 2.8 mm in outer diameter and 2 m or less in length. The cable shielding must be grounded.

NOTE: Every inductor-related device, such as a relay or contactor, must have an over-voltage protection circuit.

## Configuring Drive Parameters

In This Chapter.... page

- Choosing a Programming Device ..... 2
- Using Keypad Devices ..... 3
- "D" Group: Monitoring Functions ..... $\underline{6}$
- "F" Group: Main Profile Parameters ..... 9
- "A" Group: Standard Functions ..... 10
- "B" Group: Fine-Tuning Functions ..... 30
- "C" Group: Intelligent Terminal Functions ..... 50
- "H" Group: Motor Constants Functions ..... 66
- "P" Group: Expansion Card Functions ..... 69
- "U" Group: User-selectable Menu Functions ..... 74
- Programming Error Codes ..... 75


## Choosing a Programming Device

## Introduction

Inverter Programming Keypads

Hitachi variable frequency drives (inverters) use the latest electronics technology for getting the right AC waveform to the motor at the right time. The benefits are many, including energy savings and higher machine output or productivity. The flexibility required to handle a broad range of applications has required ever more configurable options and parameters-inverters are now a complex industrial automation component. And this can make a product seem difficult to use, but the goal of this chapter is to make this easier for you.
As the powerup test in Chapter 2 demonstrated, you do not have to program very many parameters to run the motor. In fact, most applications would benefit only from programming just a few, specific parameters. This chapter will explain the purpose of each set of parameters, and help you choose the ones that are important to your application.

If you are developing a new application for the inverter and a motor, finding the right parameters to change is mostly an exercise in optimization. Therefore, it is okay to begin running the motor with a loosely tuned system. By making specific, individual changes and observing their effects, you can achieve a finely tuned system. And, the SJ7002 Series inverters have a built-in auto-tuning algorithm to set certain motor parameters.

The front panel keypad is the first and best way to get to know the inverter's capabilities. Every function or programmable parameter is accessible from the keypad. All keypads have the same basic layout, but with different features. The OPE-SRE has a potentiometer knob for frequency setting input. The SRW-0EX Read/write Copy Unit has the ability to upload (copy) or download (write) all inverter parameter data to/from memory in the copy unit itself. This unit is useful in transferring one inverter's settings to another.

The following table shows various programming options, the features unique to each device, and the cables required.

| Device | Part <br> Number | Parameter <br> Access | Parameter <br> setting <br> storage | Cables (for optional <br> external mounting) |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  |  | Part <br> number | Length |  |  |
| Inverter keypad, <br> U.S. version | OPE-SRE | Monitor and <br> program | EEPROM in <br> inverter | ICS-1 | 1 meter |
|  |  | Monitor and <br> program | EEPROM in <br> inverter | Use same two cables as <br> above |  |
| Inverter keypad, <br> European version | OPE-S | ICS |  |  |  |
| Read/write Copy <br> Unit with Keypad | SRW-0EX | Monitor and <br> program; read or <br> write all data | EEPROM in <br> inverter or in <br> copy unit | Use same two cables as <br> above |  |

TIP: Other special-purpose keypads are available, such as ones to serve the needs of the HVAC market (heating, ventilating \& air conditioning). Please contact your Hitachi distributor for details.

## Using Keypad Devices

Inverter Front Panel Keypad

The SJ7002 Series inverter front keypad contains all the elements for both monitoring and programming parameters. The keypad layout (OPE-SRE) is shown below. All other programming devices for the inverter have a similar key arrangement and function.


- Run/Stop LED - ON when the inverter output is ON and the motor is developing torque, and OFF when the inverter output is OFF (Stop Mode).
- Program/Monitor LED - This LED is ON when the inverter is ready for parameter editing (Program Mode). It is normally OFF when the parameter display is monitoring data (Monitor Mode). However, the PRG LED will be ON whenever you are monitoring the value of parameter D001. (When the keypad is enabled as the frequency source via A001 $=02$, you can edit the inverter frequency directly from D001 monitor display by using the Up/Down keys.)
- Run Key - Press this key to run the motor (the Run Enable LED must be ON first). Parameter F004, Keypad Run Key Routing, determines whether the Run key generates a Run FWD or Run REV command.
- Run Key Enable LED - is ON when the inverter is ready to respond to the Run key, OFF when the Run key is disabled.
- Stop/Reset Key - Press this key to stop the motor when it is running (uses the programmed deceleration rate). This key will also reset an alarm that has tripped.
- Potentiometer (OPE-SRE only) - allows an operator to directly set the motor speed when the potentiometer is enabled for output frequency control
- Potentiometer Enable LED - ON when the potentiometer is enabled for value entry (OPE-SRE only).
- Parameter Display - a 4-digit, 7-segment display for parameters and function codes.
- Display Units: Hertz/Volts/Amperes/kW/\% - These LEDs indicate the units associated with the parameter display. When the display is monitoring a parameter, the appropriate LED is ON. In the case of kW units, both Volts and Amperes LEDs will be ON. An easy way to remember this is that $\mathrm{kW}=(\mathrm{V} \times \mathrm{A}) / 1000$.
- Power LED - This LED is ON when the power input to the inverter is ON.
- Alarm LED - This LED is ON when an alarm condition has tripped the inverter. Clearing the alarm will turn this LED OFF again. See Chapter 6 for details on clearing alarms.
- Function Key - This key is used to navigate through the lists of parameters and functions for setting and monitoring parameter values.
- Up/Down ( $\uparrow, \boxed{2})$ Keys - Use these keys to alternately move up or down the lists of parameter and functions shown in the display, and increment/decrement values.
- Store ( STR ) Key - When the unit is in Program Mode and the operator has edited a parameter value, press the Store key to write the new value to the EEPROM. This parameter is then displayed at powerup by default. If you want to change the powerup default, navigate to a new parameter value and press the Store key.

Keypad
Navigational Map

Whether you use the keypad on the inverter or the read-write copy unit, each navigates the same way. The diagram below shows the basic navigational map of parameters and functions.

Monitor Mode


NOTE: The inverter 7-segment display shows lower case "b" and "d", meaning the same as the upper case letters "B" and "D" used in this manual (for uniformity "A to F").

## Operational Modes

 Mode alternates with Monitor Mode. This is a very important ability, for it shows that a technician can approach a running machine and change some parameters without shutting down the machine.

The occurrence of a fault during operation will cause the inverter to enter the Trip Mode as shown. An event such as an output overload will cause the inverter to exit the Run Mode and turn OFF its output to the motor. In the Trip Mode, any request to run the motor is ignored. You must clear the error by pressing the Stop/Reset switch. See "Monitoring Trip Events, History, \& Conditions" on page 6-5.


The inverter can be in Run Mode (inverter output is controlling motor) and still allow you to edit certain parameters. This is useful in applications that must run continuously, yet need some inverter parameter adjustment.

The parameter tables in this chapter have a column titled "Run Mode Edit." An Ex mark $\boldsymbol{X}$ means the parameter cannot be edited; a Check mark $\boldsymbol{V}$ means the parameter can be edited. You'll notice in the table example to the right the two adjacent marks: " $\boldsymbol{X} \boldsymbol{\checkmark}$ ". The two marks (that can also be " $\boldsymbol{X} \boldsymbol{X}$ " or " $\boldsymbol{V}$ ") correspond to these levels of access to editing:

- Low-access level to Run Mode edits (indicated by left-most mark)

- High-access level to Run Mode edits (indicated by right-most mark)

The Software Lock Setting (parameter B031) determines the particular access level that is in effect during Run Mode and access in other conditions, as well. It is the responsibility of the user to choose a useful and safe software lock setting for the inverter operating conditions and personnel. Please refer to "Software Lock Mode" on page 3-38 for more information.

## Control Algorithms

The motor control program in the SJ7002 inverter has several sinusoidal PWM switching algorithms. The intent is that you select the best algorithm for the motor characteristics in your application. Each algorithm generates the frequency output in a unique way. Once configured, the algorithm is the basis for other parameter settings as well (see "Torque Control Algorithms" on page 3-14). Therefore, choose the best algorithm early in your application design process.

Inverter Control Algorithms


## "D" Group: Monitoring Functions

Parameter
Monitoring Functions

You can access important system parameter values with the "D" Group monitoring functions, whether the inverter is in Run Mode or Stop Mode. After selecting the function code number for the parameter you want to monitor, press the Function key once to show the value on the display. In Functions D005 and D006 the intelligent terminals use individual segments of the display to show ON/OFF status.

| Func. Code | Name | Description | Units |
| :---: | :---: | :---: | :---: |
| D001 | Output frequency monitor | Real-time display of output frequency to motor, from 0.0 to 400.0 Hz | $\begin{gathered} \hline 0.0 \text { to } 400.0 \\ \mathrm{~Hz} \end{gathered}$ |
| D002 | Output current monitor | Filtered display of output current to motor ( 100 mS internal filter time constant) | A |
| D003 | Rotation direction monitor | Three different indications: <br> Forward <br> Stop <br> Reverse | - |
| D004 | Process variable (PV), PID feedback monitor | Displays the scaled PID process variable (feedback) value (A75 is scale factor) | - |
| D005 | Intelligent input terminal status | Displays the state of the intelligent input terminals: | 4 |
| D006 | Intelligent output terminal status | Displays the state of the intelligent output terminals: | - |
| D007 | Scaled output frequency monitor | Displays the output frequency scaled by the constant in B0086. Decimal point indicates range: <br> XX.XX 0.00 to 99.99 <br> XXX.X 100.0 to 999.9 <br> XXXX. 1000 to 9999 <br> XXXX 10000 to 99990 | Userdefined |
| D008 | Actual frequency monitor | Displays the actual shaft speed of the motor, converted to frequency | Hz |
| D009 | Torque command monitor | Displays the level of the torque command when the inverter is set to torque control mode | \% |
| D010 | Torque bias monitor | Displays the level of the torque bias, if enabled, when the inverter is in vector control mode with feedback | \% |


| Func. <br> Code | Name | Description | Units |
| :---: | :---: | :---: | :---: |
| D012 | Torque monitor | Estimated output torque value, range is -300.0 to $+300.0 \%$ | \% |
| D013 | Output voltage monitor | Voltage of output to motor, range is 0.0 to 600.0 V | VAC |
| D014 | Power monitor | Input power to inverter, range is 0.0 to 999.9 | kW |
| D015 | Cumulative power monitor | Displays cumulative input power to inverter; B079 selects the multiplier for units. Range is 0.0 to $999.9,1000$ to 9999 , or 100 to 999 | kW/h |
| D016 | Cumulative operation RUN time monitor | Displays total time the inverter has been in RUN mode in hours. <br> Range is 0 to 9999 / 1000 to 9999/ 100 to 999 ( 10,000 to 99,900 ) hrs. | hours |
| D017 | Cumulative power-on time monitor | Displays total time the inverter has had input power (ON) in hours. Range is: 0 to 9999 / 100.0 to 999.9 / 1000 to 9999 / 100 to 999 hrs. | hours |
| D018 | Heat sink temperature monitor | Displays the temperature of the inverter's heat sink | ${ }^{\circ} \mathrm{C}$ |
| D019 | Motor temperature monitor | Displays motor internal temperature (requires an NTC thermistor installed in the motor and connected to [TH] and [CM1]). | ${ }^{\circ} \mathrm{C}$ |
| D022 | Component life monitor | Displays estimated life status of DC bus capacitors and cooling fans | - |
| D023 | Program counter | Displays the current program step being executed when the inverter is operating under the control of an EZ Sequence program | Programs |
| D024 | Program number counter | Displays the EZ Sequence program identification number, if defined in the program, when a program is loaded in the inverter | Program |
| D025 | User monitor 0 | Displays state of internal EZ Sequence register User Monitor 0 | - |
| D026 | User monitor 1 | Displays state of internal EZ Sequence register User Monitor 1 | - |
| D027 | User monitor 2 | Displays state of internal EZ Sequence register User Monitor 2 | - |
| D028 | Pulse counter | Displays accumulated pulse count of [PCNT] intelligent input terminal (option code 74) | Pulses |
| D029 | Position setting monitor | Displays absolute position command for motor shaft in absolute position control mode | Pulses |
| D030 | Position feedback monitor | Displays absolute position of motor shaft when in absolute position control mode | Pulses |
| D102 | DC voltage monitoring | Displays the DC Bus voltage | V |
| D103 | BRD load factor monitoring | Displays the running average Dynamic Braking usage ratio (\%ED) | \% |
| D104 | Electronic thermal overload monitoring | Displays the motor electronic thermal overload estimated temperature ratio. If the value reaches $100 \%$, the inverter will trip (E05). | \% |

Trip Event and Programming Error Monitoring

The trip event and history monitoring feature lets you cycle through related information using the keypad. See "Monitoring Trip Events, History, \& Conditions" on page 6-5 for more details.

Programming errors generate an error code that begins with the special $\mathcal{O}$ character. See "Programming Error Codes" on page 3-75 for more information.

| Func. <br> Code | Name | Description | Units |
| :--- | :--- | :--- | :---: |
| D080 | Trip Counter | Number of trip events | - |
| D081 <br> to <br> D086 | Trip monitor 1 to 6 | Displays trip event information | - |
| D090 | Programming error <br> monitor | Displays programming error code | - |

## "F" Group: Main Profile Parameters

The basic frequency (speed) profile is defined by parameters contained in the "F" Group as shown to the right. The output frequency is set in Hz , but acceleration and deceleration are specified seconds (the time to ramp from zero to maximum frequency, or from maximum frequency to zero). The motor direction parameter determines whether the keypad Run key produces a FW or RV
 command. This parameter does not affect the [FW] terminal or [RV] intelligent terminal function, which you configure separately. Acceleration 1 and Deceleration 1 are the standard default accel and decel values for the main profile. Accel and decel values for an alternative profile are specified by using parameters Ax92 through Ax93. The motor direction selection (F004) determines the direction of rotation as commanded only from the keypad. This setting applies to any motor profile (1st, 2nd, or 3rd) in use at a particular time.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ (\mathbf{E U}) \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| F001 | Output frequency setting | - | - | 0 to $400(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
|  | Standard default target frequency that determines constant motor speed |  |  |  |  |  |  |  |
| F002 | Acceleration (1) time setting | - | - | 0.01 to 3600 (seconds) | 30.0 | 30.0 | 30.0 | $\checkmark \checkmark$ |
|  | Standard default acceleration |  |  |  |  |  |  |  |
| F202 | Acceleration (1) time setting, 2nd motor | - | - | 0.01 to 3600 (seconds) | 30.0 | 30.0 | 30.0 | $\checkmark \checkmark$ |
|  | Standard default acceleration, 2nd motor |  |  |  |  |  |  |  |
| F302 | Acceleration (1) time setting, 3rd motor | - | - | 0.01 to 3600 (seconds) | 30.0 | 30.0 | 30.0 | $\checkmark \checkmark$ |
|  | Standard default acceleration, 3rd motor |  |  |  |  |  |  |  |
| F003 | Deceleration (1) time setting | - | - | 0.01 to 3600 (seconds) | 30.0 | 30.0 | 30.0 | $\checkmark \checkmark$ |
|  | Standard default deceleration |  |  |  |  |  |  |  |
| F203 | Deceleration (1) time setting, 2nd motor | - | - | 0.01 to 3600 (seconds) | 30.0 | 30.0 | 30.0 | $\checkmark \checkmark$ |
|  | Standard default deceleration, 2nd motor |  |  |  |  |  |  |  |
| F303 | Deceleration (1) time setting, 3rd motor | - | - | 0.01 to 3600 (seconds) | 30.0 | 30.0 | 30.0 | $\checkmark \checkmark$ |
|  | Standard default deceleration, 3rd motor |  |  |  |  |  |  |  |
| F004 | Keypad Run key routing | FW | 00 | Forward | 00 | 00 | 00 | $\boldsymbol{X} \times$ |
|  |  | RV | 01 | Reverse |  |  |  |  |

## "A" Group: Standard Functions

## Basic Parameter Settings




NOTE: The "2nd motor" and "3rd motor" settings in the tables in this chapter store an alternate set of parameters for additional motors. The inverter can use the 1st, 2nd, or 3rd set of parameters to generate the output frequency to the motor. See "Configuring the Inverter for Multiple Motors" on page 4-76.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A001 | Frequency source setting | VR | 00 | Keypad potentiometer | 01 | 01 | 02 | $\boldsymbol{x} \times$ |
|  |  | TRM | 01 | Control terminal |  |  |  |  |
|  |  | REM | 02 | Function F001 setting |  |  |  |  |
|  |  | RS485 | 03 | RS485 serial command |  |  |  |  |
|  |  | OP1 | 04 | Expansion board 1 |  |  |  |  |
|  |  | OP2 | 05 | Expansion board 2 |  |  |  |  |
|  |  | PLS | 06 | Pulse train input |  |  |  |  |
|  |  | PRG | 07 | Easy sequence |  |  |  |  |
|  |  | MATH | 10 | Calculate function input |  |  |  |  |
| A002 | Run command source setting | TRM | 01 | Input terminal [FW] or [RV] (assignable) | 01 | 01 | 02 | $x \times$ |
|  |  | REM | 02 | Run key on keypad of digital operator |  |  |  |  |
|  |  | RS485 | 03 | RS485 serial command |  |  |  |  |
|  |  | OP1 | 04 | Start/Stop, expansion card \#1 |  |  |  |  |
|  |  | OP2 | 05 | Start/Stop, expansion card \#2 |  |  |  |  |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE22 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FUU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A003 | Base frequency setting |  |  | 30. to maximum frequency (Hz) | 50. | 60. | 60. | $x \times$ |
| A203 | Base frequency setting, 2nd motor |  |  | 30. to maximum frequency (Hz) | 50. | 60. | 60. | $x \times$ |
| A303 | Base frequency setting, 3rd motor |  |  | 30. to maximum frequency (Hz) | 50. | 60. | 60. | $x \times$ |
| A004 | Maximum frequency setting |  |  | 30. to 400. (Hz) | 50. | 60. | 60. | x $\times$ |
| A204 | Maximum frequency setting, 2nd motor |  |  | 30. to 400. (Hz) | 50. | 60. | 60. | $x \times$ |
| A304 | Maximum frequency setting, 3rd motor |  |  | 30. to 400. (Hz) | 50. | 60. | 60. | x $\times$ |

NOTE: Intelligent terminals [OPE] (option code 31) or [F-TM] (option code 51) can override settings A001 and A002 when either terminal is ON and the operation commands for that terminal is enabled.

NOTE: When using a remote operator (SRW) to operate the inverter, the REMT (remote) key allows you to enter the frequency setting and operation commands remotely.

NOTE: When the DeviceNet option board (SJ-DN) is installed, you may keep the A002 default setting because the Run Command Source is automatically set via DeviceNet. Otherwise, only use settings A002 $=01,02$, or 03 .

NOTE: The base frequency must be less than or equal to the maximum frequency (ensure that $\mathrm{A} 003 \leq \mathrm{A} 004$ ).

Analog Input and Miscellaneous Settings

The inverter has the capability to accept external analog inputs that can command the output frequency to the motor. Signals including voltage input $(0$ to $+10 \mathrm{~V})$ at terminal [ O ], bipolar input $(-10$ to $+10 \mathrm{~V})$ at terminal [O2], and current input ( 4 to 20 mA ) at terminal [OI] are available. Terminal [L] serves as signal ground for the three analog inputs. The analog input settings adjust the curve characteristics between the analog input and the frequency output.
Adjusting [O-L] characteristics - In the graph to the right, A013 and A014 select the active portion of the input voltage range. Parameters A011 and A012 select the start and end frequency of the converted output frequency range, respectively. Together, these four parameters define the major line segment as shown. When the line does not begin at the origin (A011 and A013 > 0), then A015 defines whether the inverter outputs 0 Hz or the A011-specified frequency when the analog input value is less than the A013 setting. When the input voltage is greater than the A014 ending value, the inverter outputs the ending frequency specified by A012.

Adjusting [OI-L] characteristics - In the graph to the right, A103 and A104 select the active portion of the input current range. Parameters A101 and A102 select the start and end frequency of the converted output frequency range, respectively. Together, these four parameters define the major line segment as shown. When the line does not begin at the origin (A101 and A103 > 0), then A105 defines whether the inverter outputs 0 Hz or the A101-specified frequency when the analog input value is less than the A103
 setting. When the input voltage is greater than the A104 ending value, the inverter outputs the ending frequency specified by A102.
Adjusting [O2-L] characteristics - In the graph to the right, A113 and A114 select the active portion of the input voltage range. Parameters A111 and A112 select the start and end frequency of the converted output frequency range, respectively. Together, these four parameters define the major line segment as shown. When the input voltage is less than the A113 input starting value, the inverter outputs the starting frequency specified by A111. When the input voltage is greater than the A114 ending value, the inverter outputs the ending frequency specified by A112.


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A005 | [AT] selection | O/OI | 00 | Select between [O] and [OI] at [AT] | 00 | 00 | 00 | $\mathbf{x} \times$ |
|  |  | O/O2 | 01 | Select between [O] and [O2] at [AT] |  |  |  |  |
|  |  | O/VR | 02 | Select between [O] and keypad pot. |  |  |  |  |
|  |  | OI/VR | 03 | Select between [OI] and keypad pot. |  |  |  |  |
|  |  | O2/VR | 04 | Select between [O2] and keypad pot. |  |  |  |  |
| A006 | [O2] selection | O2 | 00 | No summing, [O2] and [OI] | 03 | 03 | 03 | $\mathbf{x} \times$ |
|  |  | O/OI-P | 01 | Sum of [O2] and [OI], neg. sum (reverse speed reference) inhibited |  |  |  |  |
|  |  | O/OI-PM | 02 | Sum of [O2] and [OI], neg. sum (reverse speed reference) allowed |  |  |  |  |
|  |  | OFF | 03 | Disable [O2] input |  |  |  |  |
| A011 | [O]-[L] input active range start frequency |  |  | 0.00 to $99.99,100.0$ to $400.00(\mathrm{~Hz})$; model -4000 HFx 2 is 0.00 to $120.00(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | The output frequency corresponding to the voltage input range starting point |  |  |  |  |  |  |  |
| A012 | [O]-[L] input active range end frequency |  |  | 0.00 to $99.99,100.0$ to $400.00(\mathrm{~Hz})$; model -4000HFx2 is 0.00 to $120.00(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | The output frequency corresponding to the voltage input range ending point |  |  |  |  |  |  |  |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE22 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A013 | [O]-[L] input active range start voltage |  |  | 0 . to [O]-[L] input active range end voltage (\%) | 0. | 0. | 0. | $x \checkmark$ |
|  | The starting point for the voltage input range |  |  |  |  |  |  |  |
| A014 | [O]-[L] input active range end voltage |  |  | [O]-[L] input active range start voltage to 100. (\%) | 100. | 100. | 100. | $x v$ |
|  | The ending point for the voltage input range |  |  |  |  |  |  |  |
| A015 | [O]-[L] input start frequency enable | O-EXS | 00 | Use A011 start value | 01 | 01 | 01 | $x \checkmark$ |
|  |  | OHz | 01 | Use 0 Hz |  |  |  |  |
| A016 | External frequency filter time constant |  |  | $\mathrm{n}=1$ to 30 (where $\mathrm{n}=$ number of samples for average); $31=500 \mathrm{~ms}$ filter | 8. | 8. | 8. | $x \checkmark$ |
| A017 | Easy sequence function enable | OFF | 00 | Disable | 00 | 00 | 00 | $x \times$ |
|  |  | ON | 01 | Enable |  |  |  |  |

Multi-speed and Jog Frequency Settings

The SJ7002 inverter has the capability to store and output up to 16 preset frequencies to the motor (A020 to A035). As in traditional motion terminology, we call this multi-speed profile capability. These preset frequencies are selected by means of digital inputs to the inverter. The inverter applies the current acceleration or deceleration setting to change from the current output frequency to the new one. The first multi-speed setting is duplicated for the second motor settings (the remaining 15 multi-speeds apply only to the first motor).
The jog speed setting is used whenever the Jog command is active. The jog speed setting range is arbitrarily limited to 10 Hz to provide safety during manual operation. The acceleration to the jog frequency is instantaneous, but you can choose from six modes for the best method for stopping the jog operation.

| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FUU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A019 | Multi-speed operation selection | BINARY | 00 | Binary; up to 16 -stage speed using 4 intelligent terminals | 00 | 00 | 00 | $\mathbf{x} \times$ |
|  |  | BIT | 01 | Single-bit; up to 8 -stage speed using 7 intelligent terminals |  |  |  |  |
| A020 | Multi-speed frequency setting |  |  | $\begin{aligned} & 0 \text { to } 360(\mathrm{~Hz}) \\ & \text { A020 }=\text { Speed } 0 \text { (1st motor) } \end{aligned}$ | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
|  | Defines the first speed of a multi-speed profile |  |  |  |  |  |  |  |
| A220 | Multi-speed frequency setting, 2nd motor |  |  | $\begin{aligned} & 0 \text { to } 360(\mathrm{~Hz}) \\ & \text { A220 }=\text { Speed } 0(2 \text { nd motor }) \end{aligned}$ | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
|  | Defines the first speed of a multi-speed profile for 2nd motor |  |  |  |  |  |  |  |
| A320 | Multi-speed frequency setting, 3rd motor |  |  | $\begin{aligned} & 0 \text { to } 360(\mathrm{~Hz}) \\ & \text { A320 }=\text { Speed } 0(3 \mathrm{rd} \text { motor }) \end{aligned}$ | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
|  | Defines the first speed of a multi-speed profile for 3rd motor |  |  |  |  |  |  |  |
| $\begin{array}{\|l} \hline \text { A021 } \\ \text { to } \\ \text { A035 } \end{array}$ | Multi-speed frequency settings (for multiple motors) |  |  | $\begin{aligned} & 0 \text { to } 360(\mathrm{~Hz}) \\ & \text { A021 }=\text { Speed } 1 \ldots \\ & \text { A035 }=\text { Speed } 15 \end{aligned}$ | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
|  | Defines 15 additional speeds |  |  |  |  |  |  |  |


| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A038 | Jog frequency setting |  |  | 0.5 to 9.99 (Hz) | 1.00 | 1.00 | 1.00 | $\checkmark \checkmark$ |
|  | Defines limited speed for jog |  |  |  |  |  |  |  |
| A039 | Jog stop mode | FRS | 00 | Free-run stop, jogging disabled during motor run | 00 | 00 | 00 | $x v$ |
|  | Defines how end of jog stops the motor | DEC | 01 | Controlled deceleration, jogging disabled during motor run |  |  |  |  |
|  |  | DB | 02 | DC braking to stop, jogging disabled during motor run |  |  |  |  |
|  |  | R-FRS | 03 | Free-run stop, jogging always enabled |  |  |  |  |
|  |  | R-DEC | 04 | Controlled deceleration, jogging always enabled |  |  |  |  |
|  |  | R-DB | 05 | DC braking to stop, jogging always enabled |  |  |  |  |

## Torque Control Algorithms

The inverter generates the motor output according to the V/f algorithm or the sensorless vector control algorithm. Parameter A044 selects the inverter torque control algorithm for generating the frequency output, as shown in the diagram to the right (A244 and A344 for 2nd and 3rd motors, respectively). The factory default is 00 (constant torque V/f control).

Review the following descriptions to help you choose the best torque control algorithm for your application.

- The built-in V/f curves are oriented toward developing constant torque or variable torque characteristics (see graphs below).
- The free-setting curve provides an even more flexible characteristic, but it requires more parameter settings.
- Sensorless vector control calculates an ideal torque vector based on current

Inverter Torque Control Algorithms
 motor position, winding currents, and so on. It is a more robust control method than the V/f control methods. However, it is more dependent on actual motor parameters and will require you to set these values carefully or to perform the auto-tuning procedure (see "Auto-tuning of Motor Constants" on page 4-71) to obtain optimum performance.

- Sensorless vector control, 0 Hz domain increases the low-speed torque performance ( $0-$ 2.5 Hz ) via an advanced Hitachi torque control algorithm. However, you will need to size the inverter for one frame size larger than the motor for proper operation.
- Vector control with sensor requires expansion card SJ-FB encoder feedback board and a motor shaft encoder. Choose this method when precise position/velocity control is required.

Constant and Variable Torque - The graph below (left) shows the constant torque characteristic from 0 Hz to the base frequency A003. The voltage remains constant for output frequencies higher than the base frequency.


The graph above (right) shows the general characteristic for variable torque. The curve may be best described in three sections, as follows:
a. The range from 0 Hz to $10 \%$ of the base frequency is the constant torque characteristic. For example, a base frequency of 60 Hz ends the constant torque characteristic segment at 6 Hz .
b. The range from $10 \%$ of the base frequency to the base frequency is the variable (reduced) torque characteristic. The voltage is output in the curve of frequency to the 1.7 power.
c. After reaching the base frequency, the characteristic maintains a constant output voltage for higher frequencies.
Using parameter A045 you can modify the voltage gain of the inverter. This is specified as a percentage of the full-scale setting AVR (Automatic Voltage Regulation) in parameter A082. The gain can be set from $20 \%$ to $100 \%$. It must be adjusted in accordance with the motor specifications.
Torque Boost - The Constant and Variable Torque algorithms feature an adjustable torque boost curve. When the motor load has a lot of inertia or starting friction, you may need to increase the low frequency starting torque characteristics by boosting the voltage above the normal V/f ratio (shown at right). The boost is applied from zero to $1 / 2$ the base frequency. You set the breakpoint of the boost (point A on the graph) by using parameters A042 and A043. The
 manual boost is calculated as an addition to the standard straight V/f line (constant torque curve).
Be aware that running the motor at a low speed for a long time can cause motor overheating. This is particularly true when manual torque boost is ON or if the motor relies on a built-in fan for cooling.

NOTE: Manual torque boost applies only to constant torque (A044=00) and variable torque (A044=01) V/f control.

NOTE: The motor stabilization parameter H006 is effective for constant torque (A044=00) and variable torque (A044=01) V/f control.

V/f Free-setting - The free-setting V/f inverter mode of operation uses voltage and frequency parameter pairs to define seven points on a V/f graph. This provides a way to define a multisegment V/f curve that best suits your application.
The frequency settings do require that $\mathrm{F} 1 \leq \mathrm{F} 2 \leq \mathrm{F} 3 \leq \mathrm{F} 4 \leq \mathrm{F} 5 \leq \mathrm{F} 6 \leq \mathrm{F} 7$; their values must have this ascending order relationship. However, the voltages V1 to V7 may either increase or decrease from one to the next. The example to the right shows the definition of a complex curve by following the setting requirements.

Free-setting f7 (B112) becomes the maximum frequency of the inverter. Therefore, we recommend setting f 7 first, since the initial value of all default frequencies $\mathrm{f} 1-\mathrm{f} 7$ is 0 Hz .


NOTE: The using of V/f free-setting operation specifies parameters that override (make invalid) certain other parameters. The parameters that become invalid are torque boost (A041/ A241), base frequency (A003/A203/A303), and maximum frequency (A004/A204/A304). In this case, we recommend leaving their settings at the factory default values.

The V/f free-setting endpoint f7/V7 parameters must stay within the more basic inverter limits in order for the specified free-setting characteristic curve to be achieved. For example, the inverter cannot output a higher voltage than the input voltage or the AVR setting voltage (Automatic Voltage Regulation), set by parameter A082. The graph to the right shows how the inverter input voltage would clip (limit) the characteristic curve if exceeded.


Sensorless Vector Control and, Sensorless Vector Control, 0Hz Domain - These advanced torque control algorithms improve the torque performance at very low speeds:

- Sensorless Vector Control - improved torque control at output frequencies down to 0.5 Hz
- Sensorless Vector Control, 0 Hz Domain - improved torque control at output frequencies from 0 to 2.5 Hz .

These low-speed torque control algorithms must be tuned to match the characteristics of the particular motor connected to your inverter. Simply using the default motor parameters in the inverter will not work satisfactorily for these control methods. Chapter 4 discusses motor/ inverter size selection and how to set the motor parameters either manually or by using the built-in auto-tuning. Before using the sensorless vector control methods, please refer to "Setting Motor Constants for Vector Control" on page 4-69.

NOTE: When the inverter is in SLV (sensorless vector) mode, use B083 to set the carrier frequency greater than 2.1 kHz for proper operation.

NOTE: You must disable sensorless vector operation when two or more motors are connected (parallel operation) to the inverter.

Vector Control with Encoder Feedback - This method of torque control uses an encoder as a motor shaft position sensor. Accurate position feedback allows the inverter to close the velocity loop and provide very accurate speed control, even with variations in motor loads. To use encoder feedback you will need to add an SJ-FB Encoder Feedback Card in the inverter's expansion bay. Please refer to "Expansion Cards" on page 5-5 in this manual or the SJ-FB manual for details. The following table shows the methods of torque control selection.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A041 | Torque boost method selection | MANUAL | 00 | Manual torque boost | 00 | 00 | 00 | $x \times$ |
|  |  | AUTO | 01 | Automatic torque boost |  |  |  |  |
| A241 | Torque boost method selection, 2nd motor | MANUAL | 00 | Manual torque boost | 00 | 00 | 00 | $\boldsymbol{x} \times$ |
|  |  | AUTO | 01 | Automatic torque boost |  |  |  |  |
| A042 | Manual torque boost value |  |  | 0.0 to 20.0 (\%) | 1.0 | 1.0 | 1.0 | $\checkmark \checkmark$ |
|  | Can boost starting torque between 0 and $20 \%$ above normal V/f curve |  |  |  |  |  |  |  |
| A242 | Manual torque boost value, 2nd motor |  |  | 0.0 to 20.0 (\%) | 1.0 | 1.0 | 1.0 | $\checkmark \checkmark$ |
|  | Can boost starting torque between 0 and $20 \%$ above normal V/f curve |  |  |  |  |  |  |  |
| A342 | Manual torque boost value, 3rd motor |  |  | 0.0 to 20.0 (\%) | 1.0 | 1.0 | 1.0 | $\checkmark \checkmark$ |
|  | Can boost starting torque between 0 and $20 \%$ above normal V/f curve |  |  |  |  |  |  |  |
| A043 | Manual torque boost frequency adjustment |  |  | 0.0 to 50.0 (\%) | 5.0 | 5.0 | 5.0 | $\checkmark \checkmark$ |
|  | Sets the frequency of the V/f breakpoint A in graph (top of previous page) for torque boost |  |  |  |  |  |  |  |
| A243 | Manual torque boost frequency adjustment, 2nd motor |  |  | 0.0 to 50.0 (\%) | 5.0 | 5.0 | 5.0 | $\checkmark \checkmark$ |
|  | Sets the frequency of the V/f breakpoint A in graph (top of previous page) for torque boost |  |  |  |  |  |  |  |
| A343 | Manual torque boost frequency adjustment, 3rd motor |  |  | 0.0 to 50.0 (\%) | 5.0 | 5.0 | 5.0 | $\checkmark \checkmark$ |
|  | Sets the frequency of the V/f breakpoint A in graph (top of previous page) for torque boost |  |  |  |  |  |  |  |
| A044 | V/f characteristic curve selection, 1st motor | VC | 00 | V/f constant torque | 00 | 00 | 00 | $\boldsymbol{x} \times$ |
|  | Torque control modes | VP | 01 | V/f variable torque |  |  |  |  |
|  |  | FREE-V/F | 02 | V/f free-setting curve |  |  |  |  |
|  |  | SLV | 03 | Sensorless vector SLV |  |  |  |  |
|  |  | OSLV | 04 | 0Hz domain SLV |  |  |  |  |
|  |  | V2 | 05 | Vector control with encoder feedback |  |  |  |  |
| A244 | V/f characteristic curve selection, 2nd motor | VC | 00 | V/f constant torque | 00 | 00 | 00 | $\boldsymbol{x} \times$ |
|  | Torque control modes | VP | 01 | V/f variable torque |  |  |  |  |
|  |  | FREE-V/F | 02 | V/f free-setting curve |  |  |  |  |
|  |  | SLV | 03 | Sensorless vector SLV |  |  |  |  |
|  |  | OSLV | 04 | 0 Hz domain SLV |  |  |  |  |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A344 | V/f characteristic curve selection, 3rd motor | VC | 00 | V/f constant torque | 00 | 00 | 00 | $x \times$ |
|  | Torque control modes | VP | 01 | V/f variable torque |  |  |  |  |
| A045 | V/f gain setting |  |  | 0. to 255. | 100. | 100. | 100. | $\checkmark \checkmark$ |
|  | Sets voltage gain of the inverter |  |  |  |  |  |  |  |
| A046 | Automatic torque boost voltage gain |  |  | 0. to 255 . | 100. | 100. | 100. | $\checkmark \checkmark$ |
|  | Voltage compensation gain for automatic torque boost |  |  |  |  |  |  |  |
| A246 | Automatic torque boost voltage gain, 2nd motor |  |  | 0. to 255 . | 100. | 100. | 100. | $\checkmark \checkmark$ |
|  | Voltage compensation gain for automatic torque boost |  |  |  |  |  |  |  |
| A047 | Automatic torque boost slip gain |  |  | 0. to 255 . | 100. | 100. | 100. | $\checkmark \checkmark$ |
|  | Slip compensation gain for automatic torque boost |  |  |  |  |  |  |  |
| A247 | Automatic torque boost slip gain, 2nd motor |  |  | 0. to 255 . | 100. | 100. | 100. | $\checkmark \checkmark$ |
|  | Slip compensation gain for automatic torque boost |  |  |  |  |  |  |  |

DC Braking Settings

The DC braking feature can provide additional stopping torque when compared to a normal deceleration to a stop. It can also ensure the motor and load are stopped before acceleration.
When decelerating - DC braking is particularly useful at low speeds when normal deceleration torque is minimal. During deceleration, the inverter injects a DC voltage into the motor windings during deceleration below a frequency you can specify (A052). The braking power (A054) and duration (A055) can both be set. You can optionally specify a wait time before DC braking (A053), during which the motor will free run (coast).

When starting - You can also apply DC braking upon the application of a Run command, specifying both the DC braking force level (A057) and the duration (A058). This will serve to stop the rotation of the motor and the load, when the load is capable of driving the motor. This effect, sometimes called "windmilling," is common in fan applications. Often, air moving in duct work
 will drive the fan in a backward direction. If an inverter is started into such a backward-rotating load, over-current trips can occur. Use DC braking as an "anti-windmilling" technique to stop the motor and load, and allow a normal acceleration from a stop. See also the "Acceleration Pause Function" on page 3-21.

You can configure the inverter to apply DC braking at stopping only, at starting only, or both. DC braking power ( $0-100 \%$ ) can be set separately for stopping and starting cases.

You can configure DC braking to initiate in one of two ways:

1. Internal DC braking - Set $\mathrm{A} 051=01$ to enable internal braking. The inverter automatically applies DC braking as configured (during stopping, starting, or both).
2. External DC braking - Configure an input terminal with option code 7 [DB] (see "External Signal for DC Injection Braking" on page 4-19 for more details). Leave A051=00, although this setting is ignored when a [DB] input is configured. The DC braking force settings (A054 and A057) still apply. However, the braking time settings (A055 and A058) do not apply (see level and edge triggered descriptions below). Use A056 to select level or edge detection for the external input.
a. Level triggered - When the [DB] input signal is ON, the inverter immediately applies DC injection braking, whether the inverter is in Run Mode or Stop Mode. You control DC braking time by the duration of the [DB] pulse.
b. Edge triggered - When the [DB] input transitions OFF-to-ON and the inverter is in Run Mode, it will apply DC braking only until the motor stops... then DC braking is OFF. During Stop Mode, the inverter ignores OFF-to-ON transitions. Therefore, do not use edge triggered operation when you need DC braking before acceleration.


CAUTION: Be careful to avoid specifying a braking time that is long enough to cause motor overheating. If you use DC braking, we recommend using a motor with a built-in thermistor and wiring it to the inverter's thermistor input (see "Thermistor Thermal Protection" on page 425). Also refer to the motor manufacturer's specifications for duty-cycle recommendations during DC braking.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A051 | DC braking enable | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ON | 01 | Enable |  |  |  | $x \checkmark$ |
|  |  | DON | 02 | Brake at set frequency only |  |  |  | $x \checkmark$ |
| A052 | DC braking frequency setting |  |  | 0.00 to 60.00 (Hz) | 0.50 | 0.50 | 0.50 | $x \checkmark$ |
|  | Frequency at which DC braking activates during decel. |  |  |  |  |  |  | $x \checkmark$ |
| A053 | DC braking wait time |  |  | 0.0 to 5.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
|  | The delay after reaching the DC braking frequency, or [DB] signal, before DC braking begins |  |  |  |  |  |  | $x \checkmark$ |
| A054 | DC braking force during deceleration |  |  | 0. to 80. (\%) | 0. | 0. | 0. | $x \checkmark$ |
|  | Variable DC braking force |  |  |  |  |  |  | $x \checkmark$ |
| A055 | DC braking time for deceleration |  |  | 0.0 to 60.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
|  | Sets the duration for DC braking during decel |  |  |  |  |  |  | $x \checkmark$ |
| A056 | DC braking / edge or level detection for [DB] input | EDGE | 00 | Edge detection | 01 | 01 | 01 | $x \checkmark$ |
|  |  | LEVEL | 01 | Level detection |  |  |  |  |
| A057 | DC braking force for starting |  |  | 0. to 80. (\%) | 0. | 0. | 0. | $x \checkmark$ |
|  | Variable DC braking force |  |  |  |  |  |  |  |
| A058 | DC braking time for starting |  |  | 0.0 to 60.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
|  | Sets the duration for DC braking before accel. |  |  |  |  |  |  |  |
| A059 | DC braking carrier frequency setting |  |  | 0.5 to $15(\mathrm{kHz})$ up to SJ700-1500; 0.5 to 3.0 kHz for models SJ7001850 to SJ700-4000 | 3.0 | 3.0 | 3.0 | $\boldsymbol{x} \times$ |

Derating of DC Braking - The inverter uses an internal carrier frequency (set by A059) to generate a DC braking voltage (do not confuse with main inverter output carrier frequency set by B083). The maximum DC braking force available to the inverter is more limited with higher DC braking carrier frequency settings for A059 according to the graphs below.

Models 0.4 - 55kW


Models 75-150kW


Models 185-4000kW


Frequencyrelated Functions

Frequency Limits - Upper and lower limits can be imposed on the inverter output frequency. These limits will apply regardless of the source of the speed reference. You can configure the lower frequency limit to be greater than zero as shown in the graph to the right. The upper limit must not exceed the rating of the motor or capability of the machinery.

Output frequency


| Func. Code | Name/ SRW Display | Keypad |  | Range and settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A061 | Frequency upper limit setting | 0000.00 | 0.00 | Setting is disabled | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Sets a limit on output frequency less than the maximum frequency (A004) | 0000.50 | >0.50 | Setting is enabled, $0.50 \text { to } 400.0(\mathrm{~Hz})$ |  |  |  | $x v$ |
| A261 | Frequency upper limit setting, 2nd motor | 0000.00 | 0.00 | Setting is disabled | 0.00 | 0.00 | 0.00 | $x v$ |
|  | Sets a limit on output frequency less than the maximum frequency (A004) | 0000.50 | >0.50 | Setting is enabled, 0.50 to $400.0(\mathrm{~Hz})$ |  |  |  | $x v$ |
| A062 | Frequency lower limit setting | 0000.00 | 0.00 | Setting is disabled | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Sets a limit on output frequency greater than zero | 0000.50 | >0.50 | Setting is enabled, 0.50 to $400.0(\mathrm{~Hz})$ |  |  |  | $x \checkmark$ |
| A262 | Frequency lower limit setting, 2nd motor | 0000.00 | 0.00 | Setting is disabled | 0.00 | 0.00 | 0.00 | $x v$ |
|  | Sets a limit on output frequency greater than zero | 0000.50 | >0.50 | Setting is enabled, 0.50 to $400.0(\mathrm{~Hz})$ |  |  |  | $x \checkmark$ |

Jump Frequencies - Some motors or machines exhibit resonances at particular speed(s), which can be destructive for prolonged running at those speeds. The inverter has up to three jump frequencies as shown in the graph. The hysteresis around the jump frequencies causes the inverter output to skip around the sensitive frequency values.


Frequency command

| Func. Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| $\begin{aligned} & \hline \text { A063 } \\ & \text { A065 } \\ & \text { A067 } \end{aligned}$ | Jump (center) frequency setting | $\begin{aligned} & 0.00 \text { to } 400.0(\mathrm{~Hz}) ; \\ & \text { model }-4000 \mathrm{HFx} 2 \text { is } 0.00 \text { to } 120.0(\mathrm{~Hz}) \end{aligned}$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Up to three output frequencies can be defined for the output to jump past to avoid motor resonances (center frequency) |  |  |  |  | $x \checkmark$ |
| A064 A066 A068 | Jump (hysteresis) frequency width setting | Range is 0.0 to 10.0 Hz | 0.50 | 0.50 | 0.50 | $x \checkmark$ |
|  | Defines the distance from the center frequency at which the jump occurs |  |  |  |  | $x \checkmark$ |

## Acceleration Pause Function

The acceleration pause function can be used to minimize the occurrence of over-current trips when accelerating high inertia loads. It introduces a dwell or pause in the acceleration ramp. You can control the frequency at which this dwell occurs (A069), and the duration of the pause time (A070). This function can also be used as an anti-windmilling tool, when the load might have a tendency to drive the motor in a reverse

Output frequency
 direction while the inverter is in a Stop mode. Initiating a normal acceleration in such a situation may result in over-current trips. This function can be used to keep the inverter output frequency and voltage at low levels long enough to bring the load to a stop, and commence turning in the desired direction before the acceleration ramp resumes. See also "DC Braking Settings" on page 3-18.

| Func. Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A069 | Acceleration pause frequency setting | 0.00 to 400.0 (Hz); <br> model -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
| A070 | Acceleration pause time setting | 0.0 to 60.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |

When enabled, the built-in PID loop calculates an ideal inverter output value to cause a loop feedback process variable (PV) to move closer in value to the setpoint (SP). The current frequency command serves as the SP. The PID loop algorithm will read the analog input for the process variable (you specify either current or voltage input) and calculate the output.

- A scale factor in A075 lets you multiply the PV by a factor, converting it into engineering units for the process.
- Proportional, integral, and derivative gains are all adjustable.
- Optional - You can assign an intelligent input terminal the option code 23, PID Disable. When active, this input disables PID operation. See "Intelligent Input Terminal Overview" on page 3-51.
- See "PID Loop Operation" on page 4-75 for more information.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FUU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A071 | PID Enable | OFF | 00 | PID operation OFF | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ON | 01 | PID operation ON |  |  |  | $x \checkmark$ |
|  |  | R-ON | 02 | PID operation ON with inverted output |  |  |  | $x \checkmark$ |
| A072 | PID proportional gain |  |  | 0.2 to 5.0 | 1.0 | 1.0 | 1.0 | $\checkmark \checkmark$ |
| A073 | PID integral time constant |  |  | 0.0 to $999.9,1000$. to 3600 . (seconds) | 1.0 | 1.0 | 1.0 | $\checkmark \checkmark$ |
| A074 | PID derivative time constant |  |  | 0.0 to 99.99, 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $\checkmark \checkmark$ |
| A075 | PV scale conversion |  |  | 0.01 to 99.99, 100.0 (seconds) | 1.00 | 1.00 | 1.00 | $x \checkmark$ |
|  | Process Variable (PV) scale factor (multiplier) |  |  |  |  |  |  | $x \checkmark$ |
| A076 | PV source setting | OI | 00 | [OI] terminal (current input) | 00 | 00 | 00 | $x \checkmark$ |
|  | Selects source of Process <br> Variable (PV) | 0 | 01 | [O] terminal (voltage input) |  |  |  | $x \checkmark$ |
|  |  | COM | 02 | Communication input |  |  |  | $x \checkmark$ |
|  |  | PLS | 03 | Pulse train frequency input |  |  |  | $x \checkmark$ |
|  |  | MATH | 10 | CALCULATE function output |  |  |  | $x \checkmark$ |
| A077 | Reverse PID Action | OFF | 00 | PID input $=$ SP - PV (normal) | 00 | 00 | 00 | $x \checkmark$ |
|  | Changes response to error | ON | 01 | PID input $=-(\mathrm{SP}-\mathrm{PV})($ reverse $)$ |  |  |  | $x \checkmark$ |
| A078 | PID output limit |  |  | Range is 0.0 to 100.0 | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
| A079 | PID feed forward select | no | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  |  | 0 | 01 | [O] terminal (voltage input) |  |  |  | $x \checkmark$ |
|  |  | OI | 02 | [OI] terminal (current input) |  |  |  | $x \checkmark$ |
|  |  | O2 | 03 | [O2] terminal (voltage input) |  |  |  | $x \checkmark$ |

NOTE: The setting A073 for the integrator is the integrator's time constant Ti, not the gain. The integrator gain $\mathrm{Ki}=1 / \mathrm{Ti}$. When you set $\mathrm{A} 073=0$, the integrator is disabled.

Automatic
Voltage
Regulation (AVR) Function

The Automatic Voltage Regulation (AVR) feature keeps the inverter output voltage at a relatively constant amplitude during power input fluctuations. This can be useful if the installation is subject to input voltage disturbances. However, the inverter cannot boost its motor output to a voltage higher than the power input voltage. If you enable this feature, be sure to select the proper voltage class setting for your motor.

| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A081 | AVR function select | ON | 00 | AVR enabled | 00 | 00 | 02 | $\boldsymbol{x} \times$ |
|  | Automatic (output) voltage regulation | OFF | 01 | AVR disabled |  |  |  |  |
|  |  | DOFF | 02 | AVR enabled except during deceleration |  |  |  |  |
| A082 | AVR voltage select |  |  | 200 V class inverter settings: 200/215/220/230/240 (V) <br> 400 V class inverter settings: <br> 380/400/415/440/460/480 (V) | $\begin{aligned} & 230 / \\ & 400 \end{aligned}$ | $\begin{aligned} & 230 / \\ & 460 \end{aligned}$ | $\begin{aligned} & 200 / \\ & 400 \end{aligned}$ | $\boldsymbol{x} \times$ |

## Energy Savings Mode / Optimal Accel/Decel

Energy Savings Mode - This function allows the inverter to deliver the minimum power necessary to maintain speed at any given frequency. This works best when driving variable torque characteristic loads such as fans and pumps. Parameter A085=01 enables this function and A086 controls the degree of its effect. A setting of 0.0 yields slow response but high accuracy, while a setting of 100 will yield a fast response with lower accuracy.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A085 | Operation mode selection | NOR | 00 | Normal operation | 00 | 00 | 00 | x $\times$ |
|  |  | ECO | 01 | Energy-saver operation |  |  |  | x $\times$ |
|  |  | FUZZY | 02 | Optimal accel/decel operation |  |  |  | x $\times$ |
| A086 | Energy saving mode tuning |  |  | 0.0 to 100 (seconds) | 50.0 | 50.0 | 50.0 | $\checkmark v$ |

Optimal Accel/Decel Operation - This feature uses "fuzzy" logic to optimize acceleration and deceleration curves in real time. It is enabled by A085=02. Optimal accel/decel operation automatically adjusts the acceleration and deceleration times in response to changes in load or inertia to take advantage of the maximum output current capability of the inverter. In general, optimal accel/decel will allow for the shortest accel and decel times based on the actual load conditions. The function continuously monitors output current and DC bus voltage to avoid reaching their respective trip levels.

NOTE: In this mode, the settings of acceleration and deceleration times (F002 and F003) are disregarded.

The acceleration time is controlled to maintain output current below the level set by the Overload Restriction Function if enabled (Parameters B021/B024, B022/B025, and B023/ B026). If Overload Restriction is not enabled, then the current limit used is $150 \%$ of the inverter's rated output current.
The deceleration time is controlled so that the output current is maintained below $150 \%$ of the inverter's rated current, and the DC bus voltage is maintained below the OV Trip level (358V or 770V).

NOTE: DO NOT use Optimal Accel/Decel (A085 = 02) when an application...

- has a requirement for constant acceleration or deceleration
- has a load inertia more than (approx.) 20 times the motor inertia
- uses internal or external regenerative braking
- uses any of the vector control modes ( $\mathrm{A} 044=03,04$, or 05 ). This function is ONLY compatible with V/F control.

NOTE: If the load exceeds the rating of the inverter, the acceleration time may be increased.

NOTE: If using a motor with a capacity that is one size smaller than the inverter rating, enable the Overload Restriction function (B021/B024) and set the Overload Restriction Level (B022/ B 025 ) to 1.5 times the motor nameplate current.

NOTE: Be aware that the acceleration and deceleration times will vary, depending on the actual load conditions during each individual operation of the inverter.

## Second Acceleration and Deceleration Functions

The SJ7002 inverter features two-stage acceleration and deceleration ramps. This gives flexibility in the profile shape. You can specify the frequency transition point, the point at which the standard acceleration (F002) or deceleration (F003) changes to the second acceleration (A092) or deceleration (A093). These profile options are also available for the second motor settings and third motor settings. All acceleration and deceleration times are time to ramp from zero speed to full speed or full speed to zero speed. Select a transition method via A094 as depicted below. Be careful not to confuse the second acceleration/deceleration settings with settings for the second motor!


| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A092 | Acceleration (2) time setting |  |  | 0.01 to $99.99,100.0$ to 999.9 , 1000. to 3600 . (seconds) | 15.0 | 15.0 | 15.0 | $\checkmark \checkmark$ |
|  | Duration of 2nd segment of acceleration |  |  |  |  |  |  |  |
| A292 | Acceleration (2) time setting, 2nd motor |  |  | 0.01 to $99.99,100.0$ to 999.9 , 1000. to 3600 . (seconds) | 15.0 | 15.0 | 15.0 | $\checkmark \checkmark$ |
|  | Duration of 2 nd segment of acceleration, 2 nd motor |  |  |  |  |  |  |  |
| A392 | Acceleration (2) time setting, 3rd motor |  |  | 0.01 to $99.99,100.0$ to 999.9 , 1000. to 3600. (seconds) | 15.0 | 15.0 | 15.0 | $\checkmark \checkmark$ |
|  | Duration of 2 nd segment of acceleration, 3rd motor |  |  |  |  |  |  |  |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE22 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FUU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A093 | Deceleration (2) time setting | - | - | 0.01 to $99.99,100.0$ to 999.9 , 1000. to 3600 . (seconds) | 15.0 | 15.0 | 15.0 | $\boldsymbol{V}$ |
|  | Duration of 2nd segment of deceleration |  |  |  |  |  |  |  |
| A293 | Deceleration (2) time setting, 2nd motor | - | - | 0.01 to $99.99,100.0$ to 999.9 , 1000. to 3600 . (seconds) | 15.0 | 15.0 | 15.0 | $\checkmark \checkmark$ |
|  | Duration of 2nd segment of deceleration, 2nd motor |  |  |  |  |  |  |  |
| A393 | Deceleration (2) time setting, 3rd motor | - | - | 0.01 to $99.99,100.0$ to 999.9 , 1000. to 3600 . (seconds) | 15.0 | 15.0 | 15.0 | $\checkmark \checkmark$ |
|  | Duration of 2nd segment of deceleration, 3rd motor |  |  |  |  |  |  | $\checkmark \checkmark$ |
| A094 | Select method to switch to Acc2/Dec2 profile | TM | 00 | [2CH] input from terminal | 00 | 00 | 00 | x $\times$ |
|  |  | FREE | 01 | transition frequency |  |  |  |  |
|  |  | F-R | 02 | when motor direction reverses |  |  |  |  |
| A294 | Select method to switch to Acc2/Dec2 profile, 2nd motor | TM | 00 | [2CH] input from terminal | 00 | 00 | 00 | $x \times$ |
|  |  | FREE | 01 | transition frequency |  |  |  |  |
|  |  | F-R | 02 | when motor direction reverses |  |  |  |  |
| A095 | Acc1 to Acc2 frequency transition point |  |  | 0.00 to $400.0(\mathrm{~Hz})$; model <br> -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.0 | 0.0 | 0.0 | $\boldsymbol{x} \times$ |
|  | Output frequency at which Accel1 switches to Accel2 |  |  |  |  |  |  |  |
| A295 | Acc1 to Acc2 frequency transition point, 2nd motor |  |  | 0.00 to $400.0(\mathrm{~Hz})$; model <br> -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.0 | 0.0 | 0.0 | $\mathbf{x} \times$ |
|  | Output frequency at which Accel1 switches to Accel2 |  |  |  |  |  |  |  |
| A096 | Dec1 to Dec2 frequency transition point |  |  | 0.00 to $400.0(\mathrm{~Hz})$; model <br> -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.0 | 0.0 | 0.0 | $\mathbf{x} \times$ |
|  | Output frequency at which Decel1 switches to Decel2 |  |  |  |  |  |  |  |
| A296 | Dec1 to Dec2 frequency transition point, 2nd motor |  |  | 0.00 to $400.0(\mathrm{~Hz})$; model <br> -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.0 | 0.0 | 0.0 | x $\times$ |
|  | Output frequency at which Decel1 switches to Decel2 |  |  |  |  |  |  |  |

NOTE: For A095 and A096 (and for 2nd motor settings), if you set a very rapid Acc1 or Dec1 time (less than 1.0 second), the inverter may not be able to change rates to Acc2 or Dec2 before reaching the target frequency. In that case, the inverter decreases the rate of Acc1 or Dec1 in order to achieve the second ramp to the target frequency.

## Accel/Decel Characteristics

Standard (default) acceleration and deceleration is linear with time. The inverter CPU can also calculate other curves shown in the graphs below. The sigmoid, U-shape, and reverse U-shape curves are useful for favoring the load characteristics in particular applications. Curve settings for acceleration and deceleration are independently selected via parameters A097 and A098, respectively. You can use the same or different curve types for acceleration and deceleration.

| Set value | 00 | 01 | 02 | 03 |
| :---: | :---: | :---: | :---: | :---: |
| Curve | Linear | Sigmoid | U-shape | Reverse U-shape |
| Accel <br> A97 | Output frequency |  |  |  |
| Decel <br> A98 |  |  |  |  |
| Typical applications | Linear acceleration and deceleration for general-purpose use | Avoid jerk on start/stop for elevators; use for delicate loads on conveyors | Tension control for win presses, roller/accumu | ng applications, web tors |


| Func. Code | Name/ <br> Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | xFE2 <br> (EU) | $\begin{aligned} & \mathbf{x F U 2} \\ & \text { (USA) } \end{aligned}$ | xFF2 <br> (Jpn) |  |
| A097 | Acceleration curve selection | Linear | 00 | Linear | 00 | 00 | 00 | x $\times$ |
|  | Set the characteristic curve of Accel1 and Accel2 | S-curve | 01 | S-curve |  |  |  |  |
|  |  | U-curve | 02 | U-shape |  |  |  |  |
|  |  | RU-curve | 03 | Reverse U-shape |  |  |  |  |
|  |  | EL-curve | 04 | EL-S curve |  |  |  |  |
| A098 | Deceleration curve selection | Linear | 00 | Linear | 00 | 00 | 00 | $x \times$ |
|  | Set the characteristic curve of Decel1 and Decel2 | S-curve | 01 | S-curve |  |  |  |  |
|  |  | U-curve | 02 | U-shape |  |  |  |  |
|  |  | RU-curve | 03 | Reverse U-shape |  |  |  |  |
|  |  | EL-curve | 04 | EL-S curve |  |  |  |  |

The acceleration and deceleration curves can deviate from a straight line to a varying degree. Parameters A131 and A132 control the amount of deviation for the acceleration and deceleration curves respectively. The following graphs show intermediate output frequency points as a percentage of the target frequency, for $25 \%, 50 \%$, and $75 \%$ acceleration time intervals.


| Func. Code | Name/ <br> Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A131 | Acceleration curve constants setting | $01$ | $01$ | Smallest deviation | 02 | 02 | 02 | $x \checkmark$ |
|  | Sets the curve deviation from straight-line acceleration in 10 levels | 10 | 10 | Largest deviation |  |  |  | $x v$ |
| A132 | Deceleration curve constants setting | $01$ | $01$ | Smallest deviation | 02 | 02 | 02 | $x v$ |
|  | Sets the curve deviation from straight-line deceleration in 10 levels | 10 | 10 | Largest deviation |  |  |  | $x \vee$ |

## Additional <br> Analog Input Settings

The parameters in the following table adjust the input characteristics of the analog inputs. When using the inputs to command the inverter output frequency, these parameters adjust the starting and ending ranges for the voltage or current, as well as the output frequency range. Related characteristic diagrams are located in "Analog Input and Miscellaneous Settings" on page 3-11.

| Func. Code | Name/ <br> Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A101 | [OI]-[L] input active range start frequency | - | - | 0.00 to $400.0(\mathrm{~Hz})$; model -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 00.0 | 00.0 | 00.0 | $x \checkmark$ |
|  | Output frequency corresponding to the current input range starting point |  |  |  |  |  |  |  |
| A102 | [OI]-[L] input active range end frequency | - | - | 0.00 to $400.0(\mathrm{~Hz})$; model -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 00.0 | 00.0 | 00.0 | $x \vee$ |
|  | Output frequency corresponding to the current input range ending point |  |  |  |  |  |  |  |
| A103 | [OI]-[L] input active range start current | - | - | 0 to 100\% | 20. | 20. | 20. | $x \checkmark$ |
|  | Starting point for the current input range |  |  |  |  |  |  |  |
| A104 | [OI]-[L] input active range end current | - | - | 0 to 100\% | 100. | 100. | 100. | $x \checkmark$ |
|  | Ending point for the current input range |  |  |  |  |  |  |  |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | FUF2 FU2 (USA) | FF2 <br> F2 <br> (Jpn) |  |
| A105 | [OI]-[L] input start frequency enable | OI-EXS | 00 | Use A101 start value | 01 | 01 | 01 | $x \checkmark$ |
|  |  | 0 Hz | 01 | Use 0 Hz |  |  |  |  |
| A111 | [O2]-[L] input active range start frequency | - | - | $-400 \text {. to } 400 .(\mathrm{Hz}) ;$ model -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Output frequency corresponding to the bipolar voltage input range starting point |  |  |  |  |  |  |  |
| A112 | [O2]-[L] input active range end frequency | - | - | $-400 . \text { to } 400 .(\mathrm{Hz}) ;$ model -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Output frequency corresponding to the bipolar voltage input range ending point |  |  |  |  |  |  |  |
| A113 | [O2]-[L] input active range start voltage | - | - | -100 to 100 (\%) | -100. | -100. | -100. | $x \checkmark$ |
|  | Starting point for the bipolar voltage input range |  |  |  |  |  |  |  |
| A114 | [O2]-[L] input active range end voltage | - | - | -100 to 100 (\%) | 100. | 100. | 100. | $x \checkmark$ |
|  | Ending point for the bipolar voltage input range |  |  |  |  |  |  |  |

Target Frequency Analog Input Calculate Function - The inverter can mathematically combine two input Operation sources into one value. The Calculate function can either add, subtract, or multiply the two selected sources. This provides the flexibility needed by various applications. You can use the result for the output frequency setting (use A001=10) or for the PID Process Variable (PV) input (use A075=03).

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{aligned} & \text { FEF2 } \\ & \text { FE2 } \\ & \text { (EU) } \end{aligned}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A141 | A input select for Calculate Function | REM | 00 | Digital operator (A020/A220/A320) | 02 | 02 | 02 | $x \checkmark$ |
|  |  | VR | 01 | Keypad potentiometer |  |  |  |  |
|  |  | O | 02 | [O] input |  |  |  |  |
|  |  | OI | 03 | [OI] input |  |  |  |  |
|  |  | COM | 04 | Comm. port |  |  |  |  |
|  |  | OP1 | 05 | Expansion card 1 |  |  |  |  |
|  |  | OP2 | 06 | Expansion card 2 |  |  |  |  |
|  |  | PLS | 07 | Pulse train frequency train input |  |  |  |  |
| A142 | B input select for Calculate Function | REM | 00 | Digital operator (A020/A220/A320) | 03 | 03 | 03 | $x \checkmark$ |
|  |  | VR | 01 | Keypad potentiometer |  |  |  |  |
|  |  | 0 | 02 | [O] input |  |  |  |  |
|  |  | OI | 03 | [OI] input |  |  |  |  |
|  |  | COM | 04 | Comm. port |  |  |  |  |
|  |  | OP1 | 05 | Expansion card 1 |  |  |  |  |
|  |  | OP2 | 06 | Expansion card 2 |  |  |  |  |
|  |  | PLS | 07 | Pulse train frequency train input |  |  |  |  |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| A143 | Calculation symbol | ADD | 00 | ADD ( A input +B input) | 00 | 00 | 00 | $x \checkmark$ |
|  | Calculates a value based on the A input (A141 selects) and the B input (A142 selects) | SUB | 01 | SUB (A input - B input) |  |  |  |  |
|  |  | MUL | 02 | MUL (A input x B input) |  |  |  |  |
| A145 | ADD frequency | - | - | 0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
| A146 | ADD direction select | FW | 00 | Plus (adds A145 value to output frequency) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | RV | 01 | Minus (subtracts A145 value from output frequency) |  |  |  |  |

Elevator Accel/ Decel Curves

Parameters A150 to A153 affect the slope of the acceleration and deceleration for the elevatorrelated S curves.

| Func. Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| A150 | EL-S curve accel. ratio 1 | Range is 0 . to 50. (\%) | 25. | 25. | 25. | $x \times$ |
| A151 | EL-S curve accel. ratio 2 | Range is 0 . to 50. | 25. | 25. | 25. | $x \times$ |
| A152 | EL-S curve decel. ratio 1 | Range is 0 . to 50 . | 25. | 25. | 25. | $x \times$ |
| A153 | EL-S curve decel. ratio 3 | Range is 0 . to 50 . | 25. | 25. | 25. | $x \times$ |

## "B" Group: Fine-Tuning Functions

The "B" Group of functions and parameters adjust some of the more subtle but useful aspects of motor control and system configuration.

Automatic
Restart Mode and Phase Loss

| Func. Code | Name/ Description | SRW | OPE | Range or Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FUU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B001 | Selection of automatic restart mode | ALM | 00 | Alarm output after trip, automatic restart disabled | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ZST | 01 | Restart at 0Hz |  |  |  |  |
|  |  | RST | 02 | Resume operation after frequency matching |  |  |  |  |
|  |  | FTP | 03 | Resume previous freq. after freq. matching, then decelerate to stop and display trip info |  |  |  |  |
|  |  | FIX | 04 | Restart with active matching frequency |  |  |  |  |


| Func. Code | Name/ Description | SRW | OPE | Range or Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B002 | Allowable under-voltage power failure time |  |  | 0.3 to 25.0 (seconds) | 1.0 | 1.0 | 1.0 | $x \checkmark$ |
|  | The amount of time a power input under-voltage can occur without tripping the power failure alarm. If under-voltage exists longer than this time, the inverter trips, even if the restart mode is selected. If it exists less than this time retry will be attempted. |  |  |  |  |  |  |  |
| B003 | Retry wait time before motor restart |  |  | 0.3 to 100 (seconds) | 1.0 | 1.0 | 1.0 | $x \checkmark$ |
|  | Time delay after a trip condition goes away before the inverter restarts the motor |  |  |  |  |  |  |  |
| B004 | Instantaneous power failure / under-voltage trip alarm enable | OFF | 00 | Disable | 00 | 00 | 00 | $x v$ |
|  |  | ON | 01 | Enable |  |  |  |  |
|  |  | DOFF | 02 | Disable during stop and ramp to stop |  |  |  |  |
| B005 | Number of restarts on power failure / under-voltage trip events | 16 | 00 | Restart 16 times | 00 | 00 | 00 | $x \vee$ |
|  |  | FREE | 01 | Always restart |  |  |  |  |
| B006 | Phase loss detection enable | OFF | 00 | Disable - no trip on phase loss | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ON | 01 | Enable - trip on phase loss |  |  |  |  |
| B007 | Restart frequency threshold |  |  | 0.00 to $400.0(\mathrm{~Hz})$; <br> model -4000 HFx2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | When the frequency of the motor is less than this value, the inverter will restart at 0 Hz |  |  |  |  |  |  |  |
| B008 | Retry after trip select | ALM | 00 | Always retry after trip | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ZST | 01 | Start with 0 Hz |  |  |  |  |
|  |  | RST | 02 | Start with frequency matching |  |  |  |  |
|  |  | FTP | 03 | Retry after deceleration and stop with matching frequency |  |  |  |  |
|  |  | FIX | 04 | Start with active matching frequency |  |  |  |  |
| B009 | Retry after undervoltage select | 16 | 00 | 16 times | 00 | 00 | 00 | $x v$ |
|  |  | FREE | 01 | Unlimited |  |  |  |  |
| B010 | Retry count select after over-voltage or overcurrent |  |  | 1 to 3 (times) | 3 | 3 | 3 | $x \checkmark$ |
| B011 | Retry wait time after trip |  |  | 0.3 to 100.0 (seconds) | 1.0 | 1.0 | 1.0 | $x \checkmark$ |

CAUTION: When a loss of phase occurs, increased ripple current will markedly reduce main capacitor life over time. Diode bridge failure can also result. If phase loss occurs under load, the inverter could be damaged. Please pay particular attention to the setting of function B006.

## Electronic Thermal Overload

The thermal overload detection protects
 directly proportional to the current in the windings, which is also proportional to the heat generated (and temperature, over time). Therefore, you must set the thermal overload threshold in terms of current (amperes) with parameter B012. The range is $50 \%$ to $120 \%$ of the rated current for each inverter model. If the current exceeds the level you specify, the inverter will trip and log an event (error E05) in the history table. The inverter turns the motor output OFF when tripped. Separate settings are available for the second and third motors (if applicable), as shown in the table below.

| Function <br> Code | Function/Description | Data or Range |
| :---: | :---: | :---: |
| B012/B212 <br> / B312 | Electronic thermal setting (calculated <br> within the inverter from current output) | Range is $0.2 \times$ rated current to <br> $1.0 \times$ rated current |

Example 1, setting for SJ700-110LFE2 ( 0.4 to 55 kW ) - The rated motor current is 64 A . The setting range is $(0.2 * 64)$ to rated current, or 12.8 A to 64.0 A . For a setting of B012 $=64 \mathrm{~A}$ (current at $100 \%$ rated current), the curve is shown below.

Example 2, setting for SJ700-750LFE2 ( 75 to 150 kW ) - The rated motor current is 149A. The setting range is $(0.2 * 149)$ to rated current, or 29.8 A to 149 A . For a setting of B012 $=149 \mathrm{~A}$ (current at $100 \%$ rated current), the curve is shown below.

SJ700-110LFE2


Trip current at 60 Hz

SJ700-750LFE2


Trip current at 60 Hz

Example 3, setting for SJ700-3150LFE2 (185 to 400 kW ) - The rated motor current is 600A. The setting range is $(0.2 * 64)$ to rated current, or 120 A to 600 A . For a setting of B012 $=600 \mathrm{~A}$ (current at $100 \%$ rated current), the curve is shown to the right.
The electronic thermal characteristic adjusts the way the inverter calculates thermal heating, based on the type of load connected to the motor, as set by parameter B013.

CAUTION: When the motor runs at lower speeds, the cooling effect of the motor's internal fan decreases.

The table below shows the torque profile settings. Use the one that matches your load.

| Function Code | Data | Function/Description |
| :---: | ---: | :--- |
| B013 / B213 / B313 | 00 | Reduced torque |
|  | 01 | Constant torque |
|  | 02 | Free-setting |

SJ700-3150LFE2


Trip current at 60 Hz

Reduced Torque Characteristic - The example below shows the effect of the reduced torque characteristic curve (for example motor and current rating). At 20 Hz , the output current is reduced by a factor of 0.8 for given trip times.



Reduced trip current at 20 Hz

Constant Torque Characteristic - Selecting the constant torque characteristic for the example motor gives the curves below. At 2.5 Hz , the output current is reduced by a factor of 0.9 for given trip times.


SJ700-150LFE2; rated current is 64A


Reduced trip current at 2.5 Hz

SJ700-3150LFE2; rated current is 600 A


Reduced trip current at 2.5 Hz

Free Thermal Characteristic - It is possible to set the electronic thermal characteristic using a free-form curve defined by three data points, according to the table below.

| Function <br> Code | Name | Description | Range |
| :---: | :--- | :--- | :---: |
| B015 / B017 / <br> B019 | Free-setting electronic <br> thermal frequency 1, 2, 3 | Data point coordinates for <br> Hz axis (horizontal) in the <br> free-form curve | 0 to $400(\mathrm{~Hz}) ;$ <br> model -4000HFx2 is <br> 0.00 to $120.0(\mathrm{~Hz})$ |
| B016 / B018 / <br> B020 | Free setting electronic <br> thermal current 1, 2, 3 | Data point coordinates for <br> Ampere axis (vertical) in the <br> free-form curve | $0.0=$ (disable) <br> 0.1 to 1000. |

The left graph below shows the region for possible free-setting curves. The right graph below shows an example curve defined by three data points specified by B015-B020.


Suppose the electronic thermal setting (B012) is set to 44 Amperes. The left graph below shows the effect of the free setting torque characteristic curve. For example, at (B017) Hz, the output current level to cause overheating in a fixed time period is reduced by a factor of (B018). The right graph below shows the reduced trip current levels in those conditions for given trip times.


Any intelligent output terminal may be programmed to indicate a thermal warning [THM]. Parameter C061 determines the warning threshold. Please see "Thermal Warning Signal" on page 4-52 for more details.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | FUF2 FU2 (USA) | FF2 <br> F2 <br> (Jpn) |  |
| B012 | Level of electronic thermal setting |  |  | 0.20 x rated current) to ( 2.00 x rated current) (A) | rated current of inverter |  |  | $x \checkmark$ |
| B212 | Level of electronic thermal setting, 2nd motor |  |  | 0.20 x rated current) to (2.00 x rated current) (A) | rated current of inverter |  |  | $x \checkmark$ |
| B312 | Level of electronic thermal setting, 3rd motor |  |  | 0.20 x rated current) to (2.00 x rated current) (A) | rated current of inverter |  |  | $x \checkmark$ |
| B013 | Electronic thermal characteristic | SUB | 00 | Reduced torque | 01 | 01 | 00 | $x \checkmark$ |
|  |  | CRT | 01 | Constant torque |  |  |  |  |
|  |  | FREE | 02 | V/f free-setting |  |  |  |  |
| B213 | Electronic thermal characteristic, 2nd motor | SUB | 00 | Reduced torque | 01 | 01 | 00 | $x \checkmark$ |
|  |  | CRT | 01 | Constant torque |  |  |  |  |
|  |  | FREE | 02 | V/f free-setting |  |  |  |  |
| B313 | Electronic thermal characteristic, 3rd motor | SUB | 00 | Reduced torque | 01 | 01 | 00 | $x \checkmark$ |
|  |  | CRT | 01 | Constant torque |  |  |  |  |
|  |  | FREE | 02 | V/f free-setting |  |  |  |  |
| B015 | Free setting, electronic thermal frequency (1) |  |  | 0.0 to $400.0(\mathrm{~Hz})$; model -4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0. | 0. | 0. | $x \checkmark$ |
| B016 | Free setting, electronic thermal current (1) |  |  | 0.0 to 1000. (A) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| B017 | Free setting, electronic thermal frequency (2) |  |  | $\begin{aligned} & 0.0 \text { to } 400.0(\mathrm{~Hz}) \\ & \text { model }-4000 \mathrm{HFx} 2 \text { is } \\ & 0.00 \text { to } 120.0(\mathrm{~Hz}) \end{aligned}$ | 0. | 0. | 0. | $x \checkmark$ |
| B018 | Free setting, electronic thermal current (2) |  |  | 0.0 to 1000. (A) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| B019 | Free setting, electronic thermal frequency (3) |  |  | 0.0 to $400.0(\mathrm{~Hz})$; model - 4000 HFx 2 is 0.00 to $120.0(\mathrm{~Hz})$ | 0. | 0. | 0. | $x \checkmark$ |
| B020 | Free setting, electronic thermal current (3) |  |  | 0.0 to 1000. (A) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |

## Overload Restriction

If the inverter's output current exceeds a preset current level you specify during acceleration or constant speed, the overload restriction feature automatically reduces the output frequency to restrict the overload. This feature does not generate an alarm or trip event. You can instruct the inverter to apply overload restriction only during constant speed, thus allowing higher currents for acceleration. Or, you may use the same threshold for both acceler-
 ation and constant speed. In the case of controlled deceleration, the inverter monitors both output current and DC bus voltage. The inverter will increase output frequency to try to avoid a trip due to over-current or over-voltage (due to regeneration).

When the inverter detects an overload, it must decelerate the motor to reduce the current until it is less than the threshold. You can choose the rate of deceleration that the inverter uses to lower the output current.

| Func. Code | Name/ <br> Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ (\mathbf{E U}) \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B021 | Overload restriction operation mode | OFF | 00 | Disable | 01 | 01 | 01 | $x \checkmark$ |
|  | Select the operating mode during overload conditions | ON | 01 | Enable for acceleration and constant speed |  |  |  |  |
|  |  | CRT | 02 | Enable for constant speed only |  |  |  |  |
|  |  | N-R | 03 | Enable for accel, decel, and constant speed |  |  |  |  |
| B022 | Overload restriction setting |  |  | ( 0.20 x rated current) to ( 1.80 x rated current) (A) | rated current times 1.50 |  |  | $x \checkmark$ |
| B023 | Deceleration rate at overload restriction |  |  | 0.10 to 30.00 (seconds) | 1.00 | 1.00 | 1.00 | $x \checkmark$ |
| B024 | Overload restriction operation mode (2) | OFF | 00 | Disable | 01 | 01 | 01 | $x \checkmark$ |
|  | Select the operating mode during overload conditions | ON | 01 | Enable for acceleration and constant speed |  |  |  |  |
|  |  | CRT | 02 | Enable for constant speed only |  |  |  |  |
|  |  | N-R | 03 | Enable for accel, decel, and constant speed |  |  |  |  |
| B025 | Overload restriction setting (2) |  |  | Models -004xxx to -550xxx: ( 0.20 x rated current) to ( 2.0 x rated current) (A); <br> Models -750xxx to -4000xxx: ( 0.20 x rated current) to ( 1.80 x rated current) (A) | rated current times 1.50 |  |  | $x \checkmark$ |
| B026 | Deceleration rate at overload restriction (2) |  |  | 0.10 to 30.00 (seconds) | 1.00 | 1.00 | 1.00 | $x \checkmark$ |
| B027 | Overcurrent suppression enable | OFF | 00 | Disable | 01 | 01 | 01 | $x \checkmark$ |
|  |  | ON | 01 | Enable |  |  |  |  |
| B028 | Current limit for active frequency-matching restart |  |  | Models -004xxx to -550xxx: ( 0.20 x rated current) to ( 2.0 x rated current) (A); <br> Models -750xxx to -4000xxx: ( 0.20 x rated current) to ( 1.80 x rated current) (A) | rated current times 1.0 |  |  | $x \checkmark$ |
| B029 | Scan time constant for active freq. matching |  |  | 0.10 to 30.00 (seconds) | 0.50 | 0.50 | 0.50 | $x \checkmark$ |


| Func. Code | Name/ <br> Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FUU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B030 | Restart freq. select for active freq. matching | CUTOFF | 00 | Frequency at last shutoff | 00 | 00 | 00 | $x \checkmark$ |
|  |  | MAX | 01 | Maximum frequency |  |  |  |  |
|  |  | SET | 02 | Set frequency |  |  |  |  |

NOTE: Two sets of overload restriction parameters are available. The set that is in use may be selected by means of an intelligent input terminal (see "Overload Restriction" on page 4-29).

## Software Lock Mode

The software lock function keeps personnel from accidentally changing parameters in the inverter memory. Use B031 to select from various protection levels.

The table below lists all combinations of B031 option codes and the ON/OFF state of the [SFT] input. Each Check $\boldsymbol{V}$ or Ex $\boldsymbol{X}$ indicates whether the corresponding parameter(s) can be edited. The Standard Parameters column below lists Low and High level access for some lock modes. These refer to the parameter tables throughout this chapter, each of which includes a column titled Run Mode Edit as shown to the right. The two marks (Check $\boldsymbol{V}$ or Ex $\boldsymbol{X}$ ) under the "Lo Hi" subtitle indicate whether Low-level and/or High-level access applies to each parameter as defined in the table below. In some lock modes, you can edit only F001 and the Multi-speed parameter group that includes A020, A220, A320, A021-A035, and A038 (Jog). However, it does not include A019, Multi-speed operation selection. The editing access to B 031 itself is unique, and is specified in the right-most two columns below.

| B031 Lock <br> Mode | [SFT] <br> Intelligent Input | Standard Parameters |  | F001 and Multi-speed <br> Stop or Run | B031 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Stop | Run |  | Stop | Run |
| 00 | OFF | $\checkmark$ | Low-level | $\checkmark$ | $\checkmark$ | x |
|  | ON | $x$ | $x$ | x | $\checkmark$ | $x$ |
| 01 | OFF | $\checkmark$ | Low-level | $\checkmark$ | $\checkmark$ | X |
|  | ON | x | x | $\checkmark$ | $\checkmark$ | X |
| 02 | (ignored) | $x$ | $x$ | x | $\checkmark$ | $x$ |
| 03 | (ignored) | $x$ | $x$ | $\checkmark$ | $\checkmark$ | $x$ |
| 10 | (ignored) | $\checkmark$ | High-level | $\checkmark$ | $\checkmark$ | $\checkmark$ |

NOTE: Since the software lock function B031 is always accessible when the motor is stopped, this feature is not the same as password protection used in other industrial control devices.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | FUF2 <br> FU2 <br> (USA) | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B031 | Software lock mode selection | MDO | 00 | Low-level access, [SFT] input blocks all edits | 01 | 01 | 01 | $x \checkmark$ |
|  |  | MD1 | 01 | Low-level access, [SFT] input blocks edits (except F001 and Multi-speed parameters) |  |  |  |  |
|  |  | MD2 | 02 | No access to edits |  |  |  |  |
|  |  | MD3 | 03 | No access to edits except F001 and Multi-speed parameters |  |  |  |  |
|  |  | MD10 | 10 | High-level access, including B031 |  |  |  |  |

NOTE: To disable parameter editing when using B031 lock modes 00 and 01, assign the [SFT] function to one of the intelligent input terminals. See "Software Lock" on page 4-23.

## Miscellaneous Settings

The miscellaneous settings include scaling factors, initialization modes, and others. This section covers some of the most important settings you may need to configure.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> LoHi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B034 | Run/power-on warning time | - | - | 0 to 9999. (0 to 99990), 1000 to 6553 (10000 to 655300) (hours) | 0. | 0. | 0. | $x \checkmark$ |
| B035 | Rotational direction restriction | FREE | 00 | Enable for both directions | 00 | 00 | 00 | x x |
|  |  | FW | 01 | Enable for forward only |  |  |  | $x \times$ |
|  |  | RV | 02 | Enable for reverse only |  |  |  | $x \times$ |
| B036 | Reduced voltage start selection | - | - | 000 (short) to 255 (long) | 06 | 06 | 06 | $x \checkmark$ |

Function Display Settings

The inverter has the (optional) capability to suppress the display and editing of certain parameters. Use B037 to select the display options. The purpose of this feature is to hide particular secondary parameters that become unused or not applicable based on more fundamental parameter settings. For example, setting A001 $=01$ configures the inverter to get its frequency command from the front keypad potentiometer. In this case, the inverter will not use the analog inputs nor their adjustment parameters for an external frequency command.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | xFE2 <br> (EU) | $\begin{aligned} & \text { XFU2 } \\ & \text { (USA) } \end{aligned}$ | xFF2 <br> (Jpn) |  |
| B037 | Function code display restriction | ALL | 00 | Display all | 04 | 04 | 04 | $x \checkmark$ |
|  |  | FUNCTION | 01 | Display only utilized functions (see table on next page) |  |  |  |  |
|  |  | USER | 02 | Display user-selected functions only (configure with U01 to U12) |  |  |  |  |
|  |  | COMPARE | 03 | Data comparison display |  |  |  |  |
|  |  | BASIC | 04 | Basic display |  |  |  |  |
| B038 | Initial display selection | STR | 00 | Last value dislayed when STR key was pressed | 01 | 01 | 01 | $x \checkmark$ |
|  |  | FM | 01 | D001 |  |  |  |  |
|  |  | lout | 02 | D002 |  |  |  |  |
|  |  | Dir | 03 | D003 |  |  |  |  |
|  |  | F-CNV | 04 | D007 |  |  |  |  |
|  |  | F-SET | 05 | F001 |  |  |  |  |
| B039 | Automatic user parameter function enable | OFF | 00 | Disable | 00 | 00 | 00 | $x v$ |
|  |  | ON | 01 | Enable |  |  |  |  |

For example, you can set B037=01 to have the inverter suppress the displaying of all analog input parameters when $\mathrm{A} 001=01$, as shown in the first row of the following table.

| Function <br> Code | Data | Resulting Non-displayed <br> Functions (when B37 = 01) | Notes |
| :---: | :---: | :---: | :---: |
| A001 | 01 | A005, A006, A011- A016, A101- <br> A114, C081-C083, C121-C123 | $[\mathrm{O}],[\mathrm{OI}],[\mathrm{O} 2]$ terminal <br> functions |


| Function <br> Code | Data | Resulting Non-displayed <br> Functions (when B37 =01) | Notes |
| :---: | :---: | :--- | :--- |
| A002 | $01,03,04$, <br> 05 | B087 | Stop key function |
| A019 | 00 | A028 - A035 | Multi-speed function |
| C001-C008 | $02,03,04$, <br> 05 |  |  |


| Function Code | Data | Resulting Non-displayed Functions (when B37 = 01) | Notes |
| :---: | :---: | :---: | :---: |
| A044, A244 | 02 | B100-B113 | Control methods |
| A051 | 01 | A052 - A059 | DC braking |
| A071 | 01 | A072-A076, C044 | PID function |
| A094 | 01 | A095 - A096 | 2-stage adjustable frequency |
| A294 | 01 | A0295 - A296 |  |
| $\begin{gathered} \text { B013, B213, } \\ \text { B313 } \end{gathered}$ | 02 | B015-B020 | Electric thermal characteristic |
| B021 | 01, 02 | B022, B023 | Overload restriction |
| B024 | 01, 02 | B025, B026 | Overload restriction 2 |
| B095 | 01, 02 | B090-B096 | Dynamic braking function |
| C001-C008 | 06 | A038, A039 | Jogging |
|  | 08 | $\begin{aligned} & \text { F202, F203, A203, A204, A220, } \\ & \text { A241 - A244, A261, A262, } \\ & \text { A292-A296, B212, B213, H202 } \\ & - \text { H206, H220 - H224, H230 - } \\ & \text { H234, H250 - H252, H260 } \end{aligned}$ | 2nd motor control |
|  | 11 | B088 | Free-run stop |
|  | 17 | F302, F303, A303, A304, A320, A342-A344, A392, A393, B312, B313, H306 | 3rd motor control |
|  | 18 | C102 | Reset |
|  | 27, 28, 29 | C101 | UP/DWN |
| A044 | 00, 01 | A041-A043 | Torque boost function |
|  | 04 | H060 | 0Hz domain SLV limiter |
| A244 | 00, 01 | A241-A243 | Torque boost function |
|  | 04 | H260 | 0Hz SLV limiter |
| A044 | 03, 04, 05 | $\begin{aligned} & \text { B040 - B046, H001, H070 - } \\ & \text { H072, H002, H005, H020 - } \\ & \text { H024, H030 - H034, H050 - } \\ & \text { H052, H060 } \end{aligned}$ | Vector control |
| A244 | 03, 04 | $\begin{aligned} & \text { B040 - B046, H001, H070 - } \\ & \text { H072, H202, H205, H220 - } \\ & \text { H224, H230 - H234, H250 - } \\ & \text { H252, H260 } \end{aligned}$ | Vector control |
| A097 | 01, 02, 03 | A131 | Acceleration pattern constant |
| A098 | 01, 02, 03 | A132 | Deceleration pattern constant |


| Function <br> Code | Data | Resulting Non-displayed <br> Functions (when B37 = 01) | Notes |
| :---: | :---: | :--- | :--- |
| B098 | 01,02 | B099, C085 | Thermistor function |
| B050 | 01 | B051 - B054 | Instantaneous power failure |
| B120 | 01 | B121 - B126 | External brake control |


| Function <br> Code | Data | Resulting Non-displayed <br> Functions (when B37 = 01) | Notes |
| :---: | :---: | :--- | :--- |
| C021-C025, <br> C026 | 02,06 | C042, C043 | Frequency arrival signal |
|  | 03 | $\mathrm{C} 040, \mathrm{C} 041$ | Overload advance notice |
|  | 21 | C 063 | Over-torque |
|  | 24,25 | $\mathrm{C} 045, \mathrm{C} 046$ | Zero-speed detection signal |
|  | 26 | C 011 | Frequency arrival signal |
| H 002 | 00 | $\mathrm{H} 020-\mathrm{H} 024$ | Overload advance notice 2 |
|  | 01,02 | $\mathrm{H} 030-\mathrm{H} 034$ | Motor constant |
|  | 00 | $\mathrm{H} 220-\mathrm{H} 224$ | Motor constant (auto-tuning) |
|  | 01,02 | $\mathrm{H} 023-\mathrm{H} 0234$ | Motor constant (auto-tuning) |
| P010 | 01 | $\mathrm{P} 011-\mathrm{P} 023, \mathrm{P} 025-\mathrm{P} 027$ | Expansion card function |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B040 | Torque limit selection | 4-SET | 00 | 4-quadrant mode | 00 | 00 | 00 | $x \checkmark$ |
|  |  | TM | 01 | Selected by two input terminals (see p. 4-30) |  |  |  |  |
|  |  | O2 | 02 | From analog [O2] input $(0$ to $10 \mathrm{~V}=$ 0 to 200\%) |  |  |  |  |
|  |  | OP1 | 03 | From expansion card 1 |  |  |  |  |
|  |  | OP2 | 04 | From expansion card 2 |  |  |  |  |
| B041 | Torque limit (1) (forward-driving in 4-quadrant mode) | 150\% | 150 | 0. to 200. (\%) | 150. | 150. | 150. | $x \checkmark$ |
|  |  | no | no | Disable torque limit |  |  |  |  |
| B042 | Torque limit (2) (reverse-regenerating in 4-quadrant mode) | 150\% | 150 | 0. to 200. (\%) | 150. | 150. | 150. | $x \checkmark$ |
|  |  | no | no | Disable torque limit |  |  |  |  |
| B043 | Torque limit (3) (reverse-driving in 4-quadrant mode) | 150\% | 150 | 0. to 200. (\%) | 150. | 150. | 150. | $x \checkmark$ |
|  |  | no | no | Disable torque limit |  |  |  |  |
| B044 | Torque limit (4) (forward-regenerating in 4-quadrant mode) | 150\% | 150 | 0. to 200. (\%) | 150. | 150. | 150. | $x \checkmark$ |
|  |  | no | no | Disable torque limit |  |  |  |  |


| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B045 | Torque limit LADSTOP enable | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  | Temporarily stops accel/decel ramps during torque limit. Available for SLV, 0 Hz domain, or vector control with feedback mode | ON | 01 | Enable |  |  |  | $x \checkmark$ |
| B046 | Reverse Run protection enable | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  | Prohibits reverse motor rotation | ON | 01 | Enable |  |  |  |  |

Controlled Deceleration at Power Loss - When enabled, this feature permits the inverter to control final motor deceleration upon loss of inverter input power. First, you must make a wiring change to the inverter. See "Optional Controlled Decel and Alarm at Power Loss" on page 4-4 for complete instructions including wiring and signal timing diagrams for using the controlled deceleration at power loss feature.

After making the wiring change, use function B050 to enable the feature. Use B051 to determine the point at which a decaying DC bus voltage will trigger the controlled deceleration. Use parameter B054 to specify an initial step-wise deceleration at power loss, and B053 to specify the duration of the linear deceleration.

During the controlled deceleration the inverter itself acts as a load to decelerate the motor. With either a high-inertia load or a short deceleration time (or both), it is possible that the inverter impedance will not be low enough to continue linear deceleration and avoid an over-voltage condition on the DC bus. Use parameter B052 to specify a threshold for the over-voltage. In this case, the inverter pauses deceleration (runs at constant speed). When the DC bus decays again below the threshold, linear deceleration resumes. The pause/resume process will repeat as necessary until the DC bus energy is depleted (under-voltage condition occurs).
The case when setting B052 is lower than the inverter supply voltage has special considerations:

- If B052 Over-voltage Threshold During Power Loss is less than B051 DC Bus Voltage Trigger Level During Power Loss, the over-voltage threshold during power loss will be increased to the DC bus voltage trigger level with the stop level is applied. However, the parameter setting will not be changed.
- When B052 is less than the supply voltage (the rectified DC voltage or the AC voltage times square root of two), when power recovers the inverter will be in the LAD-stop state and cannot decelerate. (The Stop Command and frequency change command are ignored until deceleration is complete.) be sure to set B052 higher than the standard supply voltage.
- A non-stop deceleration function cannot be canceled until it is complete. To restart the inverter operations after power recovery, wait until the inverter stops. Then enter a Stop Command and then an operation command (FW, RV).
- Setting a higher value for B054 Initial Output Frequency Decrease During Power Loss results in an over-current trip due to sudden deceleration. Setting a lower value for B054 or larger value for B053 Deceleration Time Setting During Power Loss results in under-voltage trip due to reduced regenerative energy.

Non-stop deceleration at instantaneous power failure (B050=01) has these characteristics:

- The nonstop deceleration at instantaneous power failure is the function making the inverter decelerate and stop the motor while maintaining the voltage below the overvoltage level (over-voltage threshold during power loss [b052]) when an instantaneous power failure occurs during the inverter operation.
- To use this function, remove the J51 connector cables from terminals R0 and T0, connect the main circuit terminals P and R0 to each other, and connect the main circuit terminals N and T0 to each other. Use 0.75 mm 2 or heavier wires for the connections.
- If an instantaneous power failure has occurred while the inverter is operating the motor and the output voltage falls to the DC bus voltage trigger level during power loss (b051) or less, the inverter reduces the output frequency by the initial output frequency decrease during power loss (b054) once, and then decelerates the motor for the deceleration time setting during power loss (b053).
- If the voltage increases to an overvoltage level (exceeding the over-voltage threshold during power loss [b052]) because of regeneration, the inverter enters the LAD stop state (decelerate to stop) until the voltage falls below the overvoltage level.

If the over-voltage threshold during power loss (B052) is less than the DC bus voltage trigger level during power loss (B051), the over-voltage threshold during power loss will be increased to the DC bus voltage trigger level during power loss when the stop level is applied. (However, the stored setting will not be changed.) And, in case B052 is lower than the supply voltage (equivalent to rectified DC voltage which is square root of 2 times the supply AC voltage), when power recovers while this function is activated, inverter will be in the LAD stop status and cannot decelerate. (Stop command and frequency change command are not accepted until deceleration is complete). Be sure to set b052 higher than the normal supply voltage.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B050 | Controlled deceleration and stop on power loss | OFF | 00 | Disable | 00 | 00 | 00 | $\boldsymbol{x} \times$ |
|  | Allows inverter control using regenerative energy to decelerate after loss of input power (requires jumper change) | DEC | 01 | Constant decel to stop |  |  |  | $x \times$ |
|  |  | NS1 | 02 | Constant DC voltage control with resume |  |  |  | $\boldsymbol{x} \times$ |
|  |  | NS2 | 03 | Constant DC voltage control |  |  |  | $x \times$ |
| B051 | DC bus voltage trigger level during power loss |  |  | 0.0 to 999.9, 1000. (V) | $\begin{gathered} 220.0 / \\ 440.0 \end{gathered}$ | $\begin{gathered} 220.0 / \\ 440.0 \end{gathered}$ | $\begin{gathered} 220.0 / \\ 440.0 \end{gathered}$ | X $\times$ |
|  | Sets trigger for controlled deceleration and stop on power loss function |  |  |  |  |  |  |  |
| B052 | Over-voltage threshold during power loss |  |  | 0.0 to 999.9, 1000. (V) | $\begin{aligned} & 360.0 / \\ & 720.0 \end{aligned}$ | $\begin{aligned} & 360.0 / \\ & 720.0 \end{aligned}$ | $\begin{gathered} 360.0 / \\ 720.0 \end{gathered}$ | $x \times$ |
|  | Sets over-voltage threshold for controlled deceleration function |  |  |  |  |  |  |  |
| B053 | Deceleration time setting during power loss |  |  | 0.01 to $99.99,100.0$ to 999.9 , 1000 to 3600 (seconds) | 1.00 | 1.00 | 1.00 | $\boldsymbol{x} \times$ |
| B054 | Initial output frequency decrease during power loss |  |  | 0.00 to $10.00(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | X $\times$ |
|  | Sets the initial decrease in output frequency upon power loss |  |  |  |  |  |  |  |
| B055 | Proportional gain setting for non-stop operation at power loss |  |  | 0.00 to 2.55 | 0.20 | 0.20 | 0.20 | $\boldsymbol{x} \times$ |
| B056 | Integral time setting for non-stop operation at power loss |  |  | 0.0 to $9.999,10.00$ to 65.55 | 0.10 | 0.10 | 0.10 | $\boldsymbol{x} \times$ |

## Window Comparators

The window comparator function controls digital outputs based on the comparison of analog input values to user-defined upper and lower limits.

| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \mathbf{x F E} 2 \\ (\mathbf{E U}) \end{gathered}$ | $\begin{aligned} & \text { XFU2 } \\ & \text { (USA) } \end{aligned}$ | $\underset{(\mathrm{Jpn})}{\mathbf{x F F} 2}$ |  |
| B060 | [O] input maximum limit level of window comparator |  |  | 0. to 100. (\%) <br> Lower limit = B061 + B062 x 2 | 100 | 100 | 100 | $x \checkmark$ |
| B061 | [O] input minimum limit level of window comparator |  |  | 0. to 100. (\%) <br> Lower limit = B060-B062 x 2 | 0 | 0 | 0 | $x v$ |
| B062 | [O] input hysteresis width of window comparator |  |  | $\begin{aligned} & \text { 0. to } 10 .(\%) \\ & \text { Lower limit = B061 - B062 x } 2 \end{aligned}$ | 0 | 0 | 0 | $x v$ |
| B063 | [OI] input maximum limit level of window comparator |  |  | 0. to 100. (\%) <br> Lower limit = B064 + B066 x 2 | 100 | 100 | 100 | $x \checkmark$ |
| B064 | [OI] input minimum limit level of window comparator |  |  | 0. to 100. (\%) <br> Lower limit $=$ B063 - B066 x 2 | 0 | 0 | 0 | $x v$ |
| B065 | [OI] input hysteresis width of window comparator |  |  | 0. to 10. (\%) <br> Lower limit = B063-B064 x 2 | 0 | 0 | 0 | $x v$ |
| B066 | [O2] input maximum limit level of window comparator |  |  | $\begin{aligned} & -100 . \text { to } 100 .(\%) \\ & \text { Lower limit }=\text { B067 }+ \text { B068 } \times 2 \end{aligned}$ | 100 | 100 | 100 | $x v$ |
| B067 | [O2] input minimum limit level of window comparator |  |  | $\begin{array}{\|l\|} \hline-100 . \text { to } 100 .(\%) \\ \text { Lower limit }=\text { B066 }- \text { B068 x } 2 \end{array}$ | -100 | -100 | -100 | $x v$ |
| B068 | [O2] input hysteresis width of window comparator |  |  | 0. to 10. (\%) <br> Lower limit = B066-B067 x 2 | 0 | 0 | 0 | $x v$ |
| B070 | [O] input disconnect threshold | - | - | 0 to 100 (\%) | 255 | 255 | 255 | $x \checkmark$ |
|  |  | no | 255 | Ignore setting |  |  |  | $x v$ |
| B071 | [OI] input disconnect threshold | - | - | 0 to 100 (\%) | 255 | 255 | 255 | $x \checkmark$ |
|  |  | no | 255 | Ignore setting |  |  |  | $x \checkmark$ |
| B072 | [O2] input disconnect threshold | - | - | 0 to 100 (\%) | 127 | 127 | 127 | $x \checkmark$ |
|  |  | no | 127 | Ignore setting |  |  |  | $x \checkmark$ |

## Miscellaneous Functions

B083: Carrier frequency adjustment - The internal switching frequency of the inverter circuitry (also called the chopper frequency). It is called the carrier frequency because the lower AC output frequency of the inverter "rides" the carrier. The faint, high-pitched sound you hear when the inverter is in Run Mode is characteristic of switching power supplies in general. The carrier frequency is adjustable from 500 Hz to 15 kHz (the upper limit varies, depending on the inverter rating). The audible sound decreases at the higher frequencies, but RFI noise and leakage current may be increased. Refer to the specification derating curves in Chapter 1 to determine the maximum allowable carrier frequency setting for your particular inverter and environmental conditions.

NOTE: When the inverter is in sensorless vector mode, use B083 to set the carrier frequency greater than 2.1 kHz for proper operation.

NOTE: The carrier frequency setting must stay within specified limits for inverter-motor applications that must comply with particular regulatory agencies. For example, a European CE-approved application requires the inverter carrier to be less than 5 kHz .

B084, B085: Initialization codes - These functions allow you to restore the factory default settings. Please refer to "Restoring Factory Default Settings" on page 6-16.
B086: Frequency display scaling - You can convert the output frequency monitor on D001 to a scaled number (engineering units) monitored at function D007. For example, the motor may run a conveyor that is monitored in feet per minute. Use this formula:

$$
\text { Scaled output frequency }(\mathrm{D} 007)=\text { Output frequency }(\mathrm{D} 001) \times \text { Factor }(\mathrm{B} 086)
$$

| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B078 | Clear cumulative input power data | CNT | 00 | No change | 00 | 00 | 00 | $\checkmark \checkmark$ |
|  | Set $=01$, press STR key to clear | CLR | 01 | Clear the data |  |  |  |  |
| B079 | Cumulative input power display gain setting |  |  | 1. to 1000. | 1. | 1. | 1. | $\checkmark \checkmark$ |
| B082 | Start frequency adjustment |  |  | 0.10 to 9.99 (Hz) | 0.50 | 0.50 | 0.50 | $x v$ |
|  | Sets the starting frequency for the inverter output |  |  |  |  |  |  |  |
| B083 | Carrier frequency setting |  |  | Most models, 0.5 to $15.0(\mathrm{kHz})$; <br> -1850 and -3150 are 0.5 to $10(\mathrm{kHz})$; <br> -4000 is 0.5 to $3(\mathrm{kHz})$ | 3.0 | 3.0 | 3.0 | $x \checkmark$ |
|  | Sets the PWM carrier (internal switching freq.); all models are subject to derating |  |  |  | $\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$ | $x \checkmark$ |
| B084 | Initialization mode (parameters or trip history) | TRP | 00 | Trip history clear | 00 | 00 | 00 | x $\times$ |
|  |  | DATA | 01 | Parameter initialization |  |  |  |  |
|  |  | $\begin{array}{\|l} \hline \text { TRP/ } \\ \text { DATA } \end{array}$ | 02 | Trip history clear and parameter initialization |  |  |  |  |
| B085 | Country code for initialization | JPN | 00 | Japan version | 01 | 02 | 00 | $x \times$ |
|  | Select default parameter values for country on initialization | EUR | 01 | Europe version |  |  |  |  |
|  |  | USA | 02 | USA version |  |  |  |  |
| B086 | Frequency scaling conversion factor |  |  | 0.1 to 99.9 | 1.0 | 1.0 | 1.0 | $\checkmark \checkmark$ |
|  | Specify a constant to scale D007 to display in engineering units |  |  |  |  |  |  |  |
| B087 | STOP key enable | ON | 00 | Enable | 00 | 00 | 00 | $x \checkmark$ |
|  | Select whether the STOP key on the keypad is enabled (req.$\mathrm{A} 002=01,03,04 \text {, or } 05 \text { ) }$ | OFF | 01 | Disable |  |  |  |  |
|  |  | S-OFF | 02 | Disable only the STOP function |  |  |  |  |

B091/B088: Stop Mode / Restart Mode Configuration - You can configure how the inverter performs a standard stop (each time Run FWD and REV signals turn OFF). Setting B091 determines whether the inverter will control the deceleration, or whether it will perform a free-run stop (coast to a stop). When using the free-run stop selection, it is imperative to also configure how you want the inverter to resume control of motor speed. Setting B088 determines whether the inverter will ensure the motor always resumes at 0 Hz , or whether the motor resumes from its current coasting speed (also called frequency matching). The Run command may turn OFF briefly, allowing the motor to coast to a slower speed from which normal operation can resume.

In most applications a controlled deceleration is desirable, corresponding to $\mathrm{B} 091=00$.
However, applications such as HVAC fan control will often use a free-run stop (B091=01). This practice decreases dynamic stress on system components, prolonging system life. In this case, you will typically set B088=01 in order to resume from the current speed after a free-run stop (see diagram below, right). Note that using the default setting, B088=00, can cause trip events when the inverter attempts to force the load quickly to zero speed.

NOTE: Other events can cause (or be configured to cause) a free-run stop, such as power loss (see "Automatic Restart Mode and Phase Loss" on page 3-30), and inverter trip events in general (see "Miscellaneous Functions" on page 3-62). If all free-run stop behavior is important to your application (such as HVAC), be sure to configure each event accordingly.

Some additional parameters further configure all instances of a free-run stop. Parameter B003, Retry Wait Time Before Motor Restart, sets the minimum time the inverter will free-run. For example, if $B 003=4$ seconds (and B091=01) and the cause of the free-run stop lasts 10 seconds, the inverter will free-run (coast) for a total of 14 seconds before driving the motor again. Parameter B007, Restart Frequency Threshold, sets the motor frequency at which the inverter will no longer resume and accelerate, instead resuming from 0 Hz (complete stop).


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | FUF2 <br> FU2 <br> (USA) | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B088 | Restart mode after FRS | ZST | 00 | Restart from 0Hz | 00 | 00 | 00 | $x \checkmark$ |
|  | Selects how the inverter resumes operation when the free-run stop (FRS) is cancelled | fST | 01 | Restart from frequency detected from actual speed of motor |  |  |  |  |
|  |  | FIX | 02 | Restart from active matching frequency |  |  |  |  |
| B089 | Automatic carrier frequency reduction | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ON | 01 | Enable |  |  |  | $x \checkmark$ |
| B090 | Dynamic braking usage ratio |  |  | 0.0 to 100.0 (\%) <br> Set $=0.0$ to disable dynamic braking | 00 | 00 | 00 | $x \checkmark$ |
|  | Selects the braking duty cycle for the dynamic braking resistor (total brake \% ON-time per 100 second interval) |  |  |  |  |  |  | $x \nu$ |
| B091 | Stop mode selection | DEC | 00 | DEC (decelerate and stop) | 00 | 00 | 00 | $x \times$ |
|  | Selects how the inverter stops the motor | FRS | 01 | FRS (free run to stop) |  |  |  | $x \times$ |
| B092 | Cooling fan control (see note below) | OFF | 00 | Fan always ON | 00 | 00 | 00 | $x \times$ |
|  |  | ON | 01 | Fan ON during RUN, OFF during STOP |  |  |  | $x \times$ |
| B095 | Dynamic braking control | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  |  | $\begin{aligned} & \text { ON } \\ & \text { STPOFF } \end{aligned}$ | 01 | Enable during RUN only |  |  |  | $x \checkmark$ |
|  |  | $\begin{aligned} & \text { ON } \\ & \text { STPON } \end{aligned}$ | 02 | Enable always |  |  |  | $x \checkmark$ |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B096 | Dynamic braking activation level |  |  | $\begin{aligned} & 330 \text { to } 380 \text { (V) (200V class), } \\ & 660 \text { to } 760 \text { (V) ( } 400 \mathrm{~V} \text { class) } \end{aligned}$ | $\begin{aligned} & 360 / \\ & 720 \end{aligned}$ | $\begin{aligned} & 360 / \\ & 720 \end{aligned}$ | $\begin{aligned} & \hline 360 / \\ & 720 \end{aligned}$ | $x \checkmark$ |
| B098 | Thermistor for thermal protection control | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  |  | PTC | 01 | Enable-PTC thermistor |  |  |  | $x \vee$ |
|  |  | NTC | 02 | Enable-NTC thermistor |  |  |  | $x \checkmark$ |
| B099 | Thermal protection level setting |  |  | 0.0 to 9999 Ohms | 3000 | 3000 | 3000 | $x \checkmark$ |
|  | Thermistor resistance threshold at which trip occurs |  |  |  |  |  |  | $x \checkmark$ |

B090: Dynamic braking usage ratio - This parameter limits the amount of time the inverter can use the dynamic braking accessory device without entering the Trip Mode. Please refer to "Dynamic Braking" on page 5-6 for more information on dynamic braking accessories.

NOTE: When cooling fan control is enabled (B092=01) the inverter always turns the fan ON for five minutes immediately after powerup. This will cool the inverter in case the inverter / motor is still warm from prior running before a short power outage.

## Free-setting V/f Pattern

The free-setting V/f inverter mode of operation uses voltage and frequency parameter pairs to define seven points on a V/f graph. This provides a way to define a multi-segment V/f curve that best suits your application.
The frequency settings do require that $\mathrm{F} 1 \leq \mathrm{F} 2 \leq \mathrm{F} 3 \leq \mathrm{F} 4 \leq \mathrm{F} 5 \leq \mathrm{F} 6 \leq \mathrm{F} 7$; their values must have this ascending order relationship. To satisfy this criterion during initial parameter editing, set F7 (B112) and work backwards when setting these values, since the defaults are all 0 Hz . However, the voltages V1 to V7 may either increase or decrease from one to the next. Therefore, you may set these parameters in any order.

| Func. Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B100 | Free-setting V/f frequency (1) | 0. to Free-setting V/f frequency (2) (Hz) | 0 . | 0. | 0. | $x \times$ |
| B101 | Free-setting V/f voltage (1) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | $x \times$ |
| B102 | Free-setting V/f frequency (2) | 0. to Free-setting V/f frequency (3) (Hz) | 0. | 0. | 0. | $x \times$ |
| B103 | Free-setting V/f voltage (2) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | $x \times$ |
| B104 | Free-setting V/f frequency (3) | 0. to Free-setting V/f frequency (4) (Hz) | 0. | 0. | 0. | $\boldsymbol{X} \times$ |
| B105 | Free-setting V/f voltage (3) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | $\boldsymbol{x} \times$ |
| B106 | Free-setting V/f frequency (4) | 0. to Free-setting V/f frequency (5) (Hz) | 0. | 0. | 0. | $\boldsymbol{X} \times$ |
| B107 | Free-setting V/f voltage (4) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | $x \times$ |
| B108 | Free-setting V/f frequency (5) | 0. to Free-setting V/f frequency (6) (Hz) | 0. | 0. | 0. | $\boldsymbol{x} \times$ |
| B109 | Free-setting V/f voltage (5) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | $\boldsymbol{x}$ |
| B110 | Free-setting V/f frequency (6) | 0. to Free-setting V/f frequency (7) (Hz) | 0. | 0. | 0. | $x \times$ |
| B111 | Free-setting V/f voltage (6) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | $\boldsymbol{x} \times$ |
| B112 | Free-setting V/f frequency (7) | 0. to $400.0(\mathrm{~Hz})$ | 0. | 0. | 0. | $x \times$ |
| B113 | Free-setting V/f voltage (7) | 0.0 to 800.0 (V) | 0.0 | 0.0 | 0.0 | X $\times$ |

## External Brake Control

The brake control function in the inverter controls external braking used in systems such as elevators. The purpose of this function is to ensure the inverter is powering the motor before releasing external brakes that would permit the load to move or coast. This function requires the configuration and wiring of intelligent input and output terminals. See "External Brake Control Function" on page 4-32 for more information.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ (\mathbf{E U}) \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| B120 | Brake Control Enable | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  |  | ON | 01 | Enable |  |  |  |  |
| B121 | Brake Wait Time for Release |  |  | 0.00 to 5.00 (seconds) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Sets time delay between arrival at release frequency and the brake release signal |  |  |  |  |  |  |  |
| B122 | Brake Wait Time for Acceleration |  |  | 0.00 to 5.00 (seconds) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Sets time delay from receipt of brake confirmation signal to start of motor acceleration |  |  |  |  |  |  |  |
| B123 | Brake Wait Time for Stopping |  |  | 0.00 to 5.00 (seconds) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Sets time delay from brake confirmation signal turns OFF to inverter deceleration to 0 Hz |  |  |  |  |  |  |  |
| B124 | Brake Wait Time for Confirmation |  |  | 0.00 to 5.00 (seconds) | 0.00 | 0.00 | 0.00 | $x v$ |
|  | Sets the wait time for confirmation after turn ON/OFF of brake release. If confirmation is not received during the specified wait time, the inverter will trip with an external brake error. |  |  |  |  |  |  |  |
| B125 | Brake Release Frequency Setting |  |  | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | 0.00 | 0.00 | $x \vee$ |
|  | Sets the frequency of the brake release output signal after delay set by B121 |  |  |  |  |  |  |  |
| B126 | Brake Release Current Setting |  |  | 0 to 1.80 x rated current | Rated current for inverter |  |  | $x \checkmark$ |
|  | Sets the minimum inverter current level above which the brake release signal is permitted |  |  |  |  |  |  |  |  |  |
| B127 | Braking Frequency |  |  | 0.00 to $99.99,100.0$ to $400.0(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $x \checkmark$ |



## Overvoltage Functions

B130/B131: Over-voltage LADSTOP Enable / Over-voltage LADSTOP Level - The overvoltage LADSTOP function monitors the DC bus voltage and actively changes the output frequency profile to maintain the DC bus voltage within settable limits. Although "LAD" refers to "linear acceleration / deceleration," the inverter only "STOPs" the deceleration slope so that regenerative voltage will not cause the DC bus to rise enough to cause an over-voltage trip event. Note that acceleration is not affected.

The graph below shows an inverter output profile that starts decelerating to a stop. At two different points during the deceleration, regenerative voltage elevates the DC bus level, exceeding the LADSTOP threshold set by B131. When the Over-voltage LADSTOP feature is enabled by $\mathrm{B} 130=01$, the inverter stops the deceleration ramp in each case until the DC bus level is again less than the threshold value.


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| B130 | Over-voltage LADSTOP enable | OFF | 00 | Disable | 00 | 00 | 00 | x $\times$ |
|  | Pauses deceleration ramp when DC bus voltage rises above threshold level, in order to avoid over-voltage trip | ON | 01 | Enable during deceleration and constant speed |  |  |  | $\mathbf{x} \times$ |
|  |  | AON | 02 | Enable during acceleration |  |  |  | x $\times$ |
| B131 | Over-voltage LADSTOP level |  |  | 330 to 390 (V) for 200 V class, 660 to 780 (V) for 400 V class | $\begin{aligned} & \hline 380 / \\ & 760 \end{aligned}$ | $\begin{aligned} & \hline 380 / \\ & 760 \end{aligned}$ | $\begin{aligned} & 380 / \\ & 760 \end{aligned}$ | $x \checkmark$ |
|  | Sets the threshold level for over-voltage LADSTOP. When the DC bus voltage is above the threshold value, the inverter stops deceleration until the DC bus voltage is less than the threshold setting again. |  |  |  |  |  |  | $x \checkmark$ |
| B132 | Acceleration and deceleration rate at overvoltage suppression |  |  | 0.10 to 30.00 (seconds) | 1.00 | 1.00 | 1.00 | $x v$ |
| B133 | Overvoltage suppression proportional gain |  |  | 0.00 to 2.55 | 0.50 | 0.50 | 0.50 | $x \times$ |
| B134 | Overvoltage suppression integral time |  |  | 0.000 to $9.999,10.00$ to 63.53 (seconds) | 0.060 | 0.060 | 0.060 | x $\times$ |

## "C" Group: Intelligent Terminal Functions

The eight input terminals [1], [2], [3], [4], [5], [6], [7], and [8] can be configured for any of 44 different functions. The next two tables show how to configure the eight terminals. The inputs are logical, in that they are either OFF or ON. We define these states as $\mathrm{OFF}=0$, and $\mathrm{ON}=1$.

The inverter comes with default options for the eight terminals. These default settings are initially unique, each one having its own setting. Note that European and US versions have different default settings. You can use any option on any terminal, and even use the same option twice to create a logical OR (though usually not required).

## Input Terminal Configuration

Functions and Options -The function codes in the following table let you assign one of 44 options to any of the eight logic inputs for the SJ7002 inverters. The functions C001 through C008 configure the terminals [1] through [8] respectively. The "value" of these particular parameters is not a scalar value, but it is a discrete number that selects one option from many available options.

For example, if you set function $\mathrm{C} 001=01$, you have assigned option 01 (Reverse Run) to terminal [1]. The option codes and the specifics of how each one works are in Chapter 4.

| Func. <br> Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| C001 | Terminal [1] function | 63 programmable functions available for terminals (see next section) | 18 [RS] | 18 [RS] | 18 [RS] | $x \checkmark$ |
| C002 | Terminal [2] function |  | 16 [AT] | 16 [AT] | 16 [AT] | $x \checkmark$ |
| C003 | Terminal [3] function |  | 06 [JG] | 06 [JG] | 06 [JG] | $x \checkmark$ |
| C004 | Terminal [4] function |  | 11 [FRS] | 11 [FRS] | 11 [FRS] | $x \checkmark$ |
| C005 | Terminal [5] function |  | 09 [2CH] | $09[2 \mathrm{CH}]$ | 09 [2CH] | $x \checkmark$ |
| C006 | Terminal [6] function |  | 03 [CF2] | 13 [USP] | 03 [CF2] | $x \checkmark$ |
| C007 | Terminal [7] function |  | 02 [CF1] | 02 [CF1] | 02 [CF1] | $x \checkmark$ |
| C008 | Terminal [8] function |  | 01 [RV] | 01 [RV] | 01 [RV] | $x \checkmark$ |

The input logic convention is programmable for each of the six inputs. Most inputs default to normally open (active high), but you can select normally closed (active low) in order to invert the sense of the logic.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| C011 | Terminal [1] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x v$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \checkmark$ |
| C012 | Terminal [2] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x v$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \checkmark$ |
| C013 | Terminal [3] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \checkmark$ |
| C014 | Terminal [4] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \checkmark$ |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| C015 | Terminal [5] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x v$ |
| C016 | Terminal [6] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \vee$ |
| C017 | Terminal [7] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \vee$ |
| C018 | Terminal [8] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x v$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \checkmark$ |
| C019 | Terminal [FW] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  | $x \checkmark$ |

NOTE: An input terminal configured for option code 18 ([RS] Reset command) cannot be configured for normally closed operation.

## Intelligent Input Terminal Overview

Each of the eight intelligent terminals may be assigned any of the options in the following table. When you program one of the option codes for terminal assignments C001 to C008, the respective terminal assumes the function role of that option code. The terminal functions have a symbol or abbreviation, which we use to label a terminal using that function. For example the "Reverse Run" command is [RV]. The physical label on the terminal block connector is simply $\mathbf{1 , 2}, \mathbf{3}, \mathbf{4}, 5,6,7$, or $\mathbf{8}$. However, schematic examples in this manual also use the terminal function symbol (such as [RV]) to show the assigned option. The option codes for C 011 to C019 determine the active state of the logical input (active high or active low).
Summary Table - This table shows all forty-four intelligent input functions at a glance. Detailed descriptions of these functions, related parameters and settings, and example wiring diagrams are in "Using Intelligent Input Terminals" on page 4-13.

| Input Function Summary Table |  |  |  |
| :---: | :---: | :--- | :--- |
| Option <br> Code | Terminal <br> Symbol | Function Name | Description |
| 01 | RV | Reverse Run/Stop | Puts the inverter in Run Mode, motor runs reverse |
| 02 | CF1 | Multi-speed select, <br> Bit 0 (LSB) | Binary encoded speed select, Bit 0 |
| 03 | CF2 | Multi-speed select, <br> Bit 1 | Binary encoded speed select, Bit 1 |
| 04 | CF3 | Multi-speed select, <br> Bit 2 | Binary encoded speed select, Bit 2 |
| 05 | CF4 | Multi-speed select, <br> Bit 3 (MSB) | Binary encoded speed select, Bit 3 |
| 06 | JG | Jogging | Puts the inverter in Run Mode, output to motor runs at jog <br> parameter frequency A038 |
| 07 | DB | External Signal for DC <br> Injection Braking | Applies DC braking during deceleration |


| Input Function Summary Table |  |  |  |
| :---: | :---: | :---: | :---: |
| Option Code | Terminal Symbol | Function Name | Description |
| 08 | SET | Set (select) 2nd Motor Data | Switch from normal (1st) to 2nd motor parameters for generating frequency output to motor |
| 09 | 2 CH | 2-stage Acceleration and Deceleration | Frequency output uses 2nd-stage acceleration and deceleration values |
| 11 | FRS | Free-run Stop | Causes output to turn OFF, allowing motor to free run (coast) to stop |
| 12 | EXT | External Trip | At OFF to ON transition, inverter latches trip event and displays E12 (until a reset occurs) |
| 13 | USP | Unattended Start Protection | On powerup, the inverter will not resume a Run command that was active before power loss (mostly used in the US) |
| 14 | CS | Commercial Power Source | OFF-to-ON transition signals the inverter that the motor is already running at powerup (via bypass), thus suppressing the inverter's motor output in Run Mode; ON-to-OFF transition signals the inverter to apply a time delay (B003), frequency match its output to existing motor speed, and resume normal Run Mode operation |
| 15 | SFT | Software Lock | The keypad and remote programming devices are prevented from changing parameters |
| 16 | AT | Analog Input Voltage/ current Select | ON condition: If $\mathrm{A} 005=00$, terminal [OI] is enabled for input. If A005=01, terminal [O2] is enabled for input. (Use terminal [L] for signal return.) <br> OFF condition: Terminal [O] is enabled for voltage input (use terminal [L] for signal return). |
| 17 | SET3 | Set (select) 3rd motor data | Switch from normal (1st) to 3rd motor parameters for generating frequency output to motor |
| 18 | RS | Reset Inverter | Resets the trip condition, turns OFF the motor output, and asserts powerup reset |
| 20 | STA | START <br> (3-wire interface) | Starts the motor rotation |
| 21 | STP | STOP <br> (3-wire interface) | Stops the motor rotation |
| 22 | F/R | FWD, REV <br> (3-wire interface) | Selects the direction of motor rotation: $\mathrm{ON}=\mathrm{FWD}$; $\mathrm{OFF}=\mathrm{REV}$. While the motor is rotating, a change of $\mathrm{F} / \mathrm{R}$ will start a deceleration, followed by a change in direction. |
| 23 | PID | PID Disable | Temporarily disables PID loop control. Inverter output turns OFF as long as PID Enable is active (A071=1). |
| 24 | PIDC | PID Reset | Resets the PID loop controller. The main consequence is that the integrator sum is forced to zero. |
| 26 | CAS | Control gain setting | To select the source of internal speed loop gain... OFF selects parameters H050 to H052 (or H250 to H252 for 2nd motor); ON selects alternate parameters H 070 to H 072 |
| 27 | UP | Remote Control UP Function (motorized speed pot.) | Accelerates (increases output frequency) motor from current frequency |
| 28 | DWN | Remote Control DOWN Function (motorized speed pot.) | Decelerates (decreases output frequency) motor from current frequency |


| Input Function Summary Table |  |  |  |
| :---: | :---: | :--- | :--- |
| Option <br> Code | Terminal <br> Symbol | Function Name | Description |
| 29 | UDC | Remote Control Data <br> Clearing | Clears the UP/DWN frequency memory by forcing it to equal <br> the set frequency parameter F001. Setting C101 must be <br> set=00 to enable this function to work. |
| 31 | OPE | Operator Control | Forces the source of the output frequency setting (A001) and <br> the RUN command (A002) to be from the digital operator <br> (F001 and the Run key, respectively) |
| 32 | SF1 | Multi-speed bit 1 | Multiple speed select, Bit 1 |


| Input Function Summary Table |  |  |  |
| :---: | :---: | :---: | :---: |
| Option Code | Terminal Symbol | Function Name | Description |
| 55 | FOC | Current forcing | Forces excitation current in motor at 0 speed; for use with V/f curve settings A044/A244 $=03,04$, and 05 |
| 56 | MI1 | General-purpose input 1 | Easy sequence function, general input 1 |
| 57 | MI2 | General-purpose input 2 | Easy sequence function, general input 2 |
| 58 | MI3 | General-purpose input 3 | Easy sequence function, general input 3 |
| 59 | MI4 | General-purpose input 4 | Easy sequence function, general input 4 |
| 60 | MI5 | General-purpose input 5 | Easy sequence function, general input 5 |
| 61 | MI6 | General-purpose input 6 | Easy sequence function, general input 6 |
| 62 | MI7 | General-purpose input 7 | Easy sequence function, general input 7 |
| 63 | MI8 | General-purpose input 8 | Easy sequence function, general input 8 |
| 65 | AHD | Analog holding command | Causes the inverter to sample and hold the analog speed input, maintaining constant speed while this signal is ON |
| 66 | CP1 | Multi-stage position select 1 | Binary-encoded position select, bit 1 (LSB) |
| 67 | CP2 | Multi-stage position select 2 | Binary-encoded position select, bit 2 (LSB) |
| 68 | CP3 | Multi-stage position select 3 | Binary-encoded position select, bit 3 (MSB) |
| 69 | ORL | Zero-return limit function | Indicates that the load has reached the zero-return point, so the inverter stops the zero-return operation in progress |
| 70 | ORG | Zero-return trigger function | Starts a zero-return operation (load moves toward the zeroreturn point) |
| 71 | FOT | Forward drive stop | Limits the forward rotational torque to $10 \%$; for use at the end of travel in position control mode |
| 72 | ROT | Reverse drive stop | Limits the reverse rotational torque to $10 \%$; for use at the end of travel in position control mode |
| 73 | SPD | Speed/position control select | Causes the inverter to perform only speed control (ignores encoder pulses) while in position control mode |
| 74 | PCNT | Pulse counter input | Pulse counter input |
| 75 | PCC | Pulse counter clear | Clears the pulse count |
| no | - | Not selected | (input ignored) |

## Output Terminal Configuration

The inverter provides configuration for logic (discrete) and analog outputs, shown in the table below.

| Func. <br> Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| C021 | Terminal [11] function * | 51 programmable functions available for logic <br> (discrete) outputs (see next section) | 01 [FA1] | 01 [FA1] | 01 [FA1] | $x \checkmark$ |
| C022 | Terminal [12] function * |  | 00 [RUN] | 00 [RUN] | 00 [RUN] | $x \checkmark$ |
| C023 | Terminal [13] function * |  | 03 [OL] | 03 [OL] | 03 [OL] | $x \checkmark$ |
| C024 | Terminal [14] function * |  | 07 [OTQ] | 07 [OTQ] | 07 [OTQ] | $x \checkmark$ |
| C025 | Terminal [15] function |  | 08 [IP] | 08 [IP] | 08 [IP] | $x \checkmark$ |
| C026 | Alarm relay terminal function |  | 05 [AL] | 05 [AL] | 05 [AL] | $x \checkmark$ |
| C027 | [FM] signal selection | 12 programmable functions available for analog outputs (see after next section) | 00 (output freq.) |  |  | $x \checkmark$ |
| C028 | [AM] signal selection |  | 00 (output freq.) |  |  | $x \checkmark$ |
| C029 | [AMI] signal selection |  | 00 (output freq.) |  |  | $x \checkmark$ |
| C030 | Digital current monitor reference value | 0.20 x rated current to 2.00 <br> x rated current (A) | Rated current x 1.0 |  |  | $\checkmark \checkmark$ |
|  | Current with digital current monitor output at 1.44 kHz |  |  |  |  | $\checkmark \checkmark$ |

NOTE: *Terminals [11] - [13] or [11] - [14] are automatically configured as AC0 - AC2 or AC0 - AC3 when C62 is configured to enable alarm code output.

The output logic convention is programmable for terminals [11] - [15], and the alarm relay terminals. The open-collector output terminals [11] - [15] default to normally open (active low), but you can select normally closed (active high) for the terminals in order to invert the sense of the logic. You can invert the logical sense of the alarm relay output as well.

| Func. Code | Name/ SRW Display | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 FE2 (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| C031 | Terminal [11] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  |  |
| C032 | Terminal [12] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x v$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  |  |
| C033 | Terminal [13] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x v$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  |  |
| C034 | Terminal [14] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  |  |
| C035 | Terminal [15] active state | NO | 00 | Normally open (N.O.) | 00 | 00 | 00 | $x \vee$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  |  |
| C036 | Alarm relay terminal active state | NO | 00 | Normally open (N.O.) | 01 | 01 | 01 | $x \checkmark$ |
|  |  | NC | 01 | Normally closed (N.C.) |  |  |  |  |

Output Summary Table - This table shows all twenty-two functions for the logic output terminals [11] - [15] at a glance. Detailed function descriptions, related parameters, settings, and example wiring diagrams are in "Using Intelligent Output Terminals" on page 4-43.

| Output Function Summary Table |  |  |  |
| :---: | :---: | :---: | :---: |
| Option Code | Terminal Symbol | Function Name | Description |
| 00 | RUN | Run signal | Inverter is in Run Mode, motor running |
| 01 | FA1 | Frequency arrival type 1 constant speed | When output to motor is at the standard set frequency F001 |
| 02 | FA2 | Frequency arrival type 2 -over-frequency | Turns ON when output to motor is at or above the FA Threshold 1 (C042) during accel; turns OFF when motor output goes below the threshold during decel |
| 03 | OL | Overload advance notice signal (1) | Output current is more than the set Threshold 1 for the overload signal (set with C041) |
| 04 | OD | Output deviation for PID control | PID error is more than the set threshold for the deviation signal |
| 05 | AL | Alarm signal | Alarm condition has been met and not reset |
| 06 | FA3 | Frequency arrival type 3 at frequency | Output to motor is at the FA Threshold 1 (C042) during accel, or at C043 during decel |
| 07 | OTQ | Over-torque signal | Over-torque feature is enabled and the motor is generating excess torque |
| 08 | IP | Instantaneous power failure signal | Inverter input power has decreased below the acceptable input voltage level |
| 09 | UV | Under-voltage signal | Inverter input power has decreased below the acceptable input voltage level |
| 10 | TRQ | In torque limit | Output torque exceeds level set for the particular torque/ frequency quadrant in effect during operation |
| 11 | RNT | Operation time over | Inverter Run time exceeds the limit set by Run/power-on warning time (B034) |
| 12 | ONT | Plug-in time over | Inverter plug-in time exceeds the set limit |
| 13 | THM | Thermal alarm signal | Thermal limit for the motor is exceeded |
| 19 | BRK | Brake release signal | ON when the inverter signals the external braking system to release (open) its brake; OFF when the inverter is not driving the motor and needs the external brake engaged |
| 20 | BER | Brake error signal | ON when the output current is less than the set releasing current; OFF when the braking function is not in use, or when the output current to the motor is correct and it is safe to release the brake |
| 21 | ZS | Zero speed detect | Encoder pulses of the motor have stopped |
| 22 | DSE | Speed deviation maximum | Velocity error exceeds the error threshold defined for the encoder input |
| 23 | POK | Positioning completion | Load position is at the target |
| 24 | FA4 | Frequency arrival type 4 -over-frequency (2) | ON when output to motor is at or above the FA threshold 2 (C045) during accel; OFF when the output to motor is below the FA threshold 2 (C046) during decel |
| 25 | FA5 | Frequency arrival type 5 at frequency (2) | Output to motor is at the FA threshold 2 (C045) during accel or at C046 during decel |


| Output Function Summary Table |  |  |  |
| :---: | :---: | :---: | :---: |
| Option Code | Terminal Symbol | Function Name | Description |
| 26 | OL2 | Overload notice advance signal (2) | Output current is more than the set Threshold 2 for the overload signal (set with C111) |
| 27 | Odc | Analog [O] disconnect detect | Input signal level at terminal [ O ] is below threshold (set with B070) |
| 28 | OIDc | Analog [OI] disconnect detect | Input signal level at terminal [OI] is below threshold (set with B071) |
| 29 | O2Dc | Analog [O2] disconnect detect | Input signal level at terminal [O2] is below threshold (set with B072) |
| 31 | FBV | PID feedback second stage output | Stage \#1 inverter is indicating to Stage \# inverter that the Process Variable (PV) is in saturation. The system needs Stage \#2 output contribution to stabilize system control. |
| 32 | NDc | Network detection signal | The communications watchdog timer (period specified by C077) has timed out |
| 33 | LOG1 | Logic output 1 | Boolean operation specified by C144 has a logical "1" result |
| 34 | LOG2 | Logic output 2 | Boolean operation specified by C147 has a logical "1" result |
| 35 | LOG3 | Logic output 3 | Boolean operation specified by C150 has a logical "1" result |
| 36 | LOG4 | Logic output 4 | Boolean operation specified by C153 has a logical "1" result |
| 37 | LOG5 | Logic output 5 | Boolean operation specified by C156 has a logical "1" result |
| 38 | LOG6 | Logic output 6 | Boolean operation specified by C159 has a logical "1" result |
| 39 | WAC | Capacitor life warning | Capacitor bank on the main board needs replacement |
| 40 | WAF | Low cooling fan speed | Cooling fan is enabled but it is rotating below normal speed |
| 41 | FR | Starting contact signal | ON while the inverter receives a FW or REV command |
| 42 | OHF | Heat sink overheat warning | Inverter heat sink temperature is above the threshold set by C064 |
| 43 | LOC | Low output current signal | Output current to motor is below threshold set by C039 |
| 44 | MO1 | General output 1 | Easy sequence function, general output 1 |
| 45 | MO2 | General output 2 | Easy sequence function, general output 2 |
| 46 | MO3 | General output 3 | Easy sequence function, general output 3 |
| 47 | MO4 | General output 4 | Easy sequence function, general output 4 |
| 48 | MO5 | General output 5 | Easy sequence function, general output 5 |
| 49 | MO6 | General output 6 | Easy sequence function, general output 6 |
| 50 | IRDY | Inverter ready signal | Inverter is ready to accept commands (FW, REV, JOG, etc.) |
| 51 | FWR | Forward rotation signal | Inverter output is driving motor in forward direction |
| 52 | RVR | Reverse rotation signal | Inverter output is driving motor in reverse direction |
| 53 | MJA | Major failure signal | Inverter trip caused by internal hardware error |
| 54 | WCO | [O] terminal window comparator | [O] input is within comparator window set by B060 and B061 |
| 55 | WCOI | [OI] terminal window comparator | [OI] input is within comparator window set by B063 and B064 |


| Output Function Summary Table |  |  |  |
| :---: | :---: | :--- | :--- |
| Option <br> Code | Terminal <br> Symbol | Function Name | Description |
| 56 | WCO2 | [O2] terminal window <br> comparator | [O2] input is within comparator window set by B066 and <br> B067 |

Analog Summary Table - The following tables show all functions available for assignment to the three analog output terminals [FM], [AM], [AMI] at a glance. Detailed descriptions, related parameters, and settings are in "Analog Output Operation" on page 4-66.

| C027 Setting for Terminal FM |  |  |  |
| :---: | :--- | :--- | :--- |
| Option <br> Code | Function Name | Description | Corresponding Signal <br> Range |
| 00 | Output frequency | Actual motor speed, represented by PWM <br> signal | 0 to max. frequency in Hz |
| 01 | Output current | Motor current (\% of maximum rated output <br> current), represented by PWM signal | 0 to 200\% |
| 02 | Output torque | Rated output torque | 0 to 200\% |
| 03 | Digital output <br> frequency | Output frequency (available only at FM <br> output) | 0 to max. frequency in Hz |
| 04 | Output voltage | Rated output voltage to motor | 0 to $100 \%$ |
| 05 | Input power | Rated input power | 0 to 200\% |
| 06 | Electronic thermal <br> overload | Percentage of electronic overload attained | 0 to $100 \%$ |
| 07 | LAD frequency | Internal ramp generator frequency | 0 to max. frequency in Hz |
| 08 | Digital current monitor | Signal freq. $=1,440$ Hz when <br> output current = C030 setting | 0.2 x rated current to 2.0 x <br> rated current (A) |
| 09 | Motor temperature | Thermistor input temp. reading in PWM <br> format | 0 to 200 ${ }^{\circ} \mathrm{C}$ |
| 10 | Heat sink temperature | Inverter heatsink temp. reading in PWM <br> format | 0 to $200^{\circ} \mathrm{C}$ |
| 12 | General YA(0) analog <br> output | Internal analog value from EZ-Sequence | 0 to $100 \%$ |


| C028 Setting for Terminal [AM]; C029 Setting for Terminal [AMI] |  |  |  |
| :---: | :--- | :--- | :--- |
| Option <br> Code | Function Name | Description | Corresponding Signal <br> Range |
| 00 | Output frequency | Actual motor speed, represented by PWM <br> signal | 0 to max. frequency in Hz |
| 01 | Output current | Motor current (\% of maximum rated output <br> current), represented by PWM signal | 0 to 200\% |
| 02 | Output torque | Rated output torque | 0 to 200\% |
| 03 | Digital output <br> frequency | Output frequency (available only at FM <br> output) | 0 to max. frequency in Hz |
| 04 | Output voltage | Rated output voltage to motor | 0 to $100 \%$ |


| C028 Setting for Terminal [AM]; C029 Setting for Terminal [AMI] |  |  |  |
| :---: | :--- | :--- | :--- |
| Option <br> Code | Function Name | Description | Corresponding Signal <br> Range |
| 05 | Input power | Rated input power | 0 to 200\% |
| 06 | Electronic thermal <br> overload | Percentage of electronic overload attained | 0 to $100 \%$ |
| 07 | LAD frequency | Internal ramp generator frequency | 0 to max. frequency in Hz |
| 09 | Motor temperature | Thermistor input temp. reading in PWM <br> format | 0 to 200 ${ }^{\circ} \mathrm{C}$ |
| 10 | Heat sink temperature | Inverter heatsink temp. reading in PWM <br> format | 0 to 200 ${ }^{\circ} \mathrm{C}$ |
| 13 | General YA(1) analog <br> output | Internal analog value from EZ-Sequence | 0 to $100 \%$ (output only from <br> terminal [AM]) |
| 14 | General YA(2) analog <br> output | Internal analog value from EZ-Sequence | 0 to $100 \%$ (output only from <br> terminal [AMI]) |

Output Function Adjustment Parameters

The following parameters work in conjunction with the intelligent output function, when configured. The overload level parameter (C041) sets the motor current level at which the overload signal [OL] turns ON. The range of settings is from $0 \%$ to $200 \%$ of the rated current for the inverter. This function is for generating an early warning logic output, without causing either a trip event or a restriction of the motor current (those effects are available on other functions).
The frequency arrival signal, [FA1] to [FA5], is intended to indicate when the inverter output has reached (arrived at) the target frequency. You can adjust the timing of the leading and trailing edges of the signal via two parameters specific to acceleration and deceleration ramps, C042 and C043.

The Error for the PID loop is the magnitude (absolute value) of the difference between the Setpoint (desired value) and Process Variable (actual value). The PID output deviation signal [OD] (output terminal function option code 04) indicates when the error magnitude has exceeded a magnitude you define.



| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| C038 | Low current indication output mode select | ON | 00 | Output during acceleration/deceleration and constant speed operation | 01 | 01 | 01 | $x \vee$ |
|  |  | CRT | 01 | Output only during constant speed |  |  |  |  |
| C039 | Low current indication detection level |  |  | 0.0 to 1.80 x rated inverter current | Rated current x 1.0 |  |  | $x v$ |
|  | Low current threshold, used for intelligent output [LOC] |  |  |  |  |  |  | $x \checkmark$ |
| C040 | Overload signal output mode | ON | 00 | During accel / decel / constant speed | 01 | 01 | 01 | $x \checkmark$ |
|  | Choose when the overload signal is enabled | CRT | 01 | During constant speed only |  |  |  |  |
| C041 | Overload level setting 1 |  |  | 0.00 x rated current to 1.80 x rated current (A) | Rated current for inverter |  |  | $x v$ |
| C042 | Frequency arrival setting for acceleration |  |  | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | 0.00 | 0.00 | $x v$ |
|  | Sets the frequency arrival setting threshold for the output frequency during acceleration |  |  |  |  |  |  |  |
| C043 | Arrival frequency setting for deceleration |  |  | 0.00 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
|  | Sets the frequency arrival setting threshold for the output frequency during deceleration |  |  |  |  |  |  |  |
| C044 | PID deviation level setting |  |  | 0.0 to 100.0 (\%) | 3.0 | 3.0 | 3.0 | $x v$ |
|  | Sets the PID loop error threshold \|SP - PV| (absolute value) to trigger intelligent output [OD] |  |  |  |  |  |  |  |
| C045 | Frequency arrival setting for acceleration (2) |  |  | 0.0 to $99.99,100.0$ to 400.0 (Hz) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
| C046 | Frequency arrival setting for deceleration (2) |  |  | 0.0 to 99.99, 100.0 to 400.0 (Hz) | 0.00 | 0.00 | 0.00 | $x v$ |
| C052 | Maximum PID feedback (PV) data |  |  | 0.0 to 100.0 (\%) | 0.00 | 0.00 | 0.00 | $x v$ |
| C053 | Minimum PID feedback (PV) data |  |  | 0.0 to 100.0 (\%) | 100.0 | 100.0 | 100.0 | $x v$ |
| C055 | Over-torque (forward-driving) level setting |  |  | 0. to 180. (\%) | 100. | 100. | 100. | $x \checkmark$ |
|  | Threshold for intelligent output terminal [OTQ], quadrant I |  |  |  |  |  |  |  |
| C056 | Over-torque (reverse regenerating) level setting |  |  | 0. to 180. (\%) | 100. | 100. | 100. | $x v$ |
|  | Threshold for intelligent output terminal [OTQ], quadrant II |  |  |  |  |  |  |  |
| C057 | Over-torque (reverse driving) level setting |  |  | 0. to 180. (\%) | 100. | 100. | 100. | $x \checkmark$ |
|  | Threshold for intelligent output terminal [OTQ], quadrant III |  |  |  |  |  |  |  |
| C058 | Over-torque (forward regenerating) level setting |  |  | 0. to 180. (\%) | 100. | 100. | 100. | $x \vee$ |
|  | Threshold for intelligent output terminal [OTQ], quadrant IV |  |  |  |  |  |  |  |
| C061 | Electronic thermal warning level setting |  |  | 0. to 100. (\%) | 80. | 80. | 80. | $x \checkmark$ |
|  | Sets the threshold for intelligent output [THM] |  |  |  |  |  |  |  |
| C062 | Alarm code output | OFF | 00 | Disable | 00 | 00 | 00 | $x \checkmark$ |
|  | Allows binary alarm codes to be output to intelligent terminals | 3BIT | 01 | Enable - 3-bit code |  |  |  |  |
|  |  | 4BIT | 02 | Enable - 4-bit code |  |  |  |  |
| C063 | Zero speed detection level |  |  | 0.00 to 99.99 / 100.0 (Hz) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
| C064 | Heatsink overheat warning level |  |  | 0. to $200.0\left({ }^{\circ} \mathrm{C}\right)$ | 120 | 120 | 120 | $x \checkmark$ |
|  | Alarm temperature threshold for heatsink in inverter |  |  |  |  |  |  | $x \checkmark$ |

## Serial Communications

The following table configures the communications port of the SJ7002 inverter. You can have up to thirty-two devices on the serial communications network. The inverters are slaves and the computer or digital operator is the master. Thus, all inverters on the serial connection must use the same baud rate, data length, parity, and stop bits. However, each device on the serial network must have a unique node address. See "Serial Communications" on page B-1 for more information.

| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | xFE2 <br> (EU) | $\begin{aligned} & \mathbf{x F U 2} \\ & \text { (USA) } \end{aligned}$ | xFF2 <br> (Jpn) |  |
| C071 | Communication speed selection | TEST | 02 | Test | 04 | 04 | 04 | $x \vee$ |
|  |  | 2400bps | 03 | 2400 (bps) |  |  |  |  |
|  |  | 4800bps | 04 | 4800 (bps) |  |  |  |  |
|  |  | 9600bps | 05 | 9600 (bps) |  |  |  |  |
|  |  | 19200bps | 06 | 19200 (bps) |  |  |  |  |
| C072 | Node allocation |  |  | 1. to 32. (node) | 1. | 1. | 1. | $x \vee$ |
|  | Set the address of the inverter on the network |  |  |  |  |  |  |  |
| C073 | Communication data length selection | 7BIT | 07 | 7-bit data | 07 | 07 | 07 | $x v$ |
|  |  | 8BIT | 08 | 8-bit data |  |  |  |  |
| C074 | Communication parity selection | NO | 00 | No parity | 00 | 00 | 00 | $x \vee$ |
|  |  | EVN | 01 | Even parity |  |  |  |  |
|  |  | ODD | 02 | Odd parity |  |  |  |  |
| C075 | Communication stop bit selection | 1BIT | 01 | 1 Stop bit | 1 | 1 | 1 | $x \checkmark$ |
|  |  | 2BIT | 02 | 2 Stop bits |  |  |  |  |
| C076 | Action upon communication error selection | TRP | 00 | Trip | 02 | 02 | 02 | $x \vee$ |
|  |  | DSTP | 01 | Trip after deceleration and stop |  |  |  |  |
|  |  | NEG | 02 | No action (ignore errors) |  |  |  |  |
|  |  | FRS | 03 | Free-run stop |  |  |  |  |
|  |  | DTP | 04 | Decelerate and stop |  |  |  |  |
| C077 | Communication timeout before trip |  |  | 0.00 to 99.99 (seconds) | 0.00 | 0.00 | 0.00 | $x \checkmark$ |
| C078 | Communication wait time |  |  | 0.0 to 1000 (milliseconds) | 0. | 0. | 0. | $x \checkmark$ |
|  | Time the inverter waits after receiving a message before it transmits |  |  |  |  |  |  |  |
| C079 | Communication protocol select | ASCII | 00 | ASCII | 00 | 00 | 00 | $x \checkmark$ |
|  |  | Modbus | 01 | ModBus RTU |  |  |  |  |

## Analog Signal Calibration Settings

The functions in the following table configure the signals for the analog output terminals. Note that these settings do not change the current/voltage or sink/source characteristics - only the zero and span (scaling) of the signals.


| Func. Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| C081 | [O] input span calibration | $\begin{array}{\|l\|} \hline \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ (10000 \text { to } 65530) \end{array}$ | Factory-calibrated |  |  | $\checkmark \checkmark$ |
| C082 | [OI] input span calibration | 0. to 9999., 1000 to 6553 <br> (10000 to 65530) | Factory-calibrated |  |  | $\checkmark \checkmark$ |
| C083 | [O2] input span calibration | $\begin{array}{\|l\|} \hline \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530) \end{array}$ | Factory-calibrated |  |  | $\checkmark \checkmark$ |
| C085 | Thermistor input tuning (gain) | 0.0 to 999.9., 1000 | 105.0 | 105.0 | 105.0 | $\checkmark \checkmark$ |
| C121 | [O] input zero calibration | $\begin{array}{\|l} \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530 \text { ) } \end{array}$ | Factory-calibrated |  |  | $\checkmark \checkmark$ |
| C122 | [OI] input zero calibration | $\begin{array}{\|l} \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530 \text { ) } \end{array}$ | Factory-calibrated |  |  | $\checkmark \checkmark$ |
| C123 | [O2] input zero calibration | $\begin{array}{\|l} \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530 \text { ) } \end{array}$ | Factory-calibrated |  |  | $\checkmark \checkmark$ |

NOTE: Settings C081, C082, C083, C121, C122, C123 are factory-calibrated for each inverter. Do not change these settings unless absolutely necessary. Note that if you restore factory defaults for all parameters, these settings will not change.

## Miscellaneous Functions <br> The following table contains miscellaneous functions not in other function groups.

| Func. Code | Name/ <br> Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| C091 | Debug mode enable | MD0 | 00 | No display | 00 | 00 | 00 | x $\times$ |
|  |  | MD1 | 01 | Display |  |  |  |  |
| C101 | Up/Down memory mode selection | NO-STR | 00 | Clear last frequency (return to default frequency F001) | 00 | 00 | 00 | $x \checkmark$ |
|  | Controls speed setpoint for the inverter after power cycle | STR | 01 | Keep last frequency adjusted by UP/DWN |  |  |  |  |

C102/C103: Reset Mode / Restart Mode - The reset mode selection, set via parameter C102, determines how the inverter responds to the [RS] intelligent input signal or keypad Stop/Reset key in a trip condition. The options allow you to cancel the trip on either the OFF-to-ON or ON-to-OFF transition of [RS], and if desired, stop the inverter if it is in Run Mode. A trip event causes the inverter output to the motor to turn OFF immediately. If in Run Mode when the trip
occurred, the inverter and motor will enter free-run stop (coasting) operation. In some applications, the motor and load will still be coasting when the inverter returns to normal Run Mode operation. For that situation, you can configure the inverter output (C103=00) to resume operation from 0 Hz and accelerate normally. Or, you can configure the inverter $(\mathrm{C} 103=01)$ to resume operation from the current speed of the motor (frequency matching)—often used in applications such as HVAC.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | xFE2 <br> (EU) | $\begin{aligned} & \text { XFU2 } \\ & \text { (USA) } \end{aligned}$ | xFF2 <br> (Jpn) |  |
| C102 | Reset mode selection | ON | 00 | Cancel trip state, stop inverter output, reset CPU; clear position counter at ON transition | 00 | 00 | 00 | $\checkmark \checkmark$ |
|  | Determines response to Reset input [RST] | OFF | 01 | Cancel trip state, stop inverter output, reset CPU; clear position counter at OFF transition |  |  |  |  |
|  |  | TRP | 02 | Cancel trip state and clear position counter; no effect if a trip does not exist |  |  |  |  |
|  |  | EXT | 03 | Cancel trip state but does not clear position counter; no effect if a trip does not exist |  |  |  |  |
| C103 | Restart mode after reset | ZST | 00 | Restart at 0 Hz | 00 | 00 | 00 | $x \checkmark$ |
|  |  | fST | 01 | Resume operation after frequency matching |  |  |  |  |
|  |  | FIX | 02 | Restart with active matching frequency |  |  |  |  |
| C105 | FM gain adjustment |  |  | 50. to 200. (\%) | 100. | 100. | 100. | $x \checkmark$ |
| C106 | AM gain adjustment |  |  | 50. to 200. (\%) | 100. | 100. | 100. | $x \checkmark$ |
| C107 | AMI gain adjustment |  |  | 50. to 200. (\%) | 100. | 100. | 100. | $\checkmark \checkmark$ |
| C109 | AM bias adjustment |  |  | 0. to 100. (\%) | 0. | 0. | 0. | $\checkmark \checkmark$ |
| C110 | AMI bias adjustment |  |  | 0. to 100. (\%) | 20. | 20. | 20. | $\checkmark \checkmark$ |
| C111 | Overload setting (2) |  |  | 0.00 x rated current to 1.80 x rated current (A) | Rated current for inverter |  |  | $x \checkmark$ |

## Output Terminal Signal Functions

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| C130 | Terminal [11] ON-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C131 | Terminal [11] OFF-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C132 | Terminal [12] ON-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \vee$ |
| C133 | Terminal [12] OFF-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C134 | Terminal [13] ON-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C135 | Terminal [13] OFF-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C136 | Terminal [14] ON-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C137 | Terminal [14] OFF-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C138 | Terminal [15] ON-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |


| Func Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| C139 | Terminal [15] OFF-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C140 | Relay output ON-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C141 | Relay output OFF-delay time | - | - | 0.0 to 100.0 (seconds) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C142 | Logic output 1 function A | - | - | All programmable output functions available (except LOG1 to LOG6) | 00 (output frequency) |  |  | $x \checkmark$ |
| C143 | Logic output 1 function B | - | - |  |  |  |  | $x v$ |
| C144 | Logic output 1 operator | AND | 00 | AND | 00 | 00 | 00 | $x \checkmark$ |
|  |  | OR | 01 | OR |  |  |  | $x \checkmark$ |
|  |  | XOR | 02 | XOR (exclusive OR) |  |  |  | $x \checkmark$ |
| C145 | Logic output 2 function A | - | - | All programmable output functions available (except LOG1 to LOG6) | 00 (output frequency) |  |  | $x \vee$ |
| C146 | Logic output 2 function B | - | - |  |  |  |  | $x v$ |
| C147 | Logic output 2 operator | AND | 00 | AND | 00 | 00 | 00 | $x \checkmark$ |
|  |  | OR | 01 | OR |  |  |  | $x \checkmark$ |
|  |  | XOR | 02 | XOR (exclusive OR) |  |  |  | $x \checkmark$ |
| C148 | Logic output 3 function A | - | - | All programmable output functions available (except LOG1 to LOG6) | 00 (output frequency) |  |  | $x \checkmark$ |
| C149 | Logic output 3 function B | - | - |  |  |  |  | $x v$ |
| C150 | Logic output 3 operator | AND | 00 | AND | 00 | 00 | 00 | $x \checkmark$ |
|  |  | OR | 01 | OR |  |  |  | $x \checkmark$ |
|  |  | XOR | 02 | XOR (exclusive OR) |  |  |  | $x \checkmark$ |
| C151 | Logic output 4 function A | - | - | All programmable output functions available (except LOG1 to LOG6) | 00 (output frequency) |  |  | $x \checkmark$ |
| C152 | Logic output 4 function B | - | - |  |  |  |  | $x v$ |
| C153 | Logic output 4 operator | AND | 00 | AND | 00 | 00 | 00 | $x \checkmark$ |
|  |  | OR | 01 | OR |  |  |  | $x \checkmark$ |
|  |  | XOR | 02 | XOR (exclusive OR) |  |  |  | $x \checkmark$ |
| C154 | Logic output 5 function A | - | - | All programmable output functions available (except LOG1 to LOG6) | 00 (output frequency) |  |  | $x \checkmark$ |
| C155 | Logic output 5 function B | - | - |  |  |  |  | $x \checkmark$ |
| C156 | Logic output 5 operator | AND | 00 | AND | 00 | 00 | 00 | $x \checkmark$ |
|  |  | OR | 01 | OR |  |  |  | $x \checkmark$ |
|  |  | XOR | 02 | XOR (exclusive OR) |  |  |  | $x \checkmark$ |
| C157 | Logic output 6 function A | - | - | All programmable output functions available (except LOG1 to LOG6) | 00 (output frequency) |  |  | $x \checkmark$ |
| C158 | Logic output 6 function B | - | - |  |  |  |  | $x \checkmark$ |
| C159 | Logic output 6 operator | AND | 00 | AND | 00 | 00 | 00 | $x \checkmark$ |
|  |  | OR | 01 | OR |  |  |  | $x \checkmark$ |
|  |  | XOR | 02 | XOR (exclusive OR) |  |  |  | $x \checkmark$ |

Input Signal
Terminal
Functions

| Func. <br> Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| C160 | Terminal [1] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C161 | Terminal [2] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C162 | Terminal [3] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C163 | Terminal [4] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C164 | Terminal [5] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C165 | Terminal [6] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C166 | Terminal [7] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C167 | Terminal [8] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C168 | Terminal [FW] input response time | 0. to 200. (x 2 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |
| C169 | Multistage speed/position determination time | 0. to 200. (x 10 ms ) | 0.0 | 0.0 | 0.0 | $x \checkmark$ |

## "H" Group: Motor Constants Functions

## Introduction

The "H" Group parameters configure the inverter for the motor characteristics. You must manually set H 003 and H004 values to match the motor. Most of the remaining parameters are related to vector control, and are in use only when function A044 is set for one of the vector control modes as shown in the diagram. The procedure in"Auto-tuning of Motor Constants" on page 4-71 automatically sets all the parameters related to vector control. If you configure the inverter to use vector control, we highly recommend letting the autotuning procedure derive the values for you. If you want to reset the parameters to the factory default settings, use the procedure in "Restoring Factory Default Settings" on page 6-16.

Inverter Torque Control Algorithms


NOTE: The auto-tuning procedure and related warning messages are in "Auto-tuning of Motor Constants" on page 4-71. Please read these before trying to auto-tune the motor parameters.

| Func. <br> Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| H001 | Auto-tuning Setting | NOR | 00 | Auto-tuning OFF | 00 | 00 | 00 | $\mathbf{x} \times$ |
|  |  | NRT | 01 | Auto-tune (measure motor resistance and inductance, without rotating) |  |  |  |  |
|  |  | AUT | 02 | Auto-tune (rotate motor) |  |  |  |  |
| H002 | Motor data selection, 1st motor | NOR | 00 | Standard motor data | 00 | 00 | 00 | x $\times$ |
|  |  | AUT | 01 | Auto-tuning data |  |  |  |  |
|  |  | ONAUT | 02 | Adaptive tuning data |  |  |  |  |
| H202 | Motor data selection, 2nd motor | NOR | 00 | Standard motor data | 00 | 00 | 00 | x $\times$ |
|  |  | AUT | 01 | Auto-tuning data |  |  |  |  |
|  |  | ONAUT | 02 | Adaptive tuning data |  |  |  |  |
| H003 | Motor capacity, 1st motor |  |  | 0.20 to $400 .(\mathrm{kW})$ | Factory set |  |  | $x \times$ |
| H203 | Motor capacity, 2nd motor |  |  | 0.20 to 400 (kW) | Factory set |  |  | $x \times$ |
| H004 | Motor poles setting, 1st motor |  |  | 2, 4, 6, 8, 10 (poles) | 4 | 4 | 4 | $x \times$ |
| H204 | Motor poles setting, 2nd motor |  |  | 2, 4, 6, 8, 10 (poles) | 4 | 4 | 4 | x $\times$ |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | FEF2 <br> FE2 <br> (EU) | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| H005 | Motor speed constant, 1st motor |  |  | $\begin{aligned} & 0.001 \text { to } 9.999,10.00 \text { to } 80.00(10.000 \text { to } \\ & 80.000) \end{aligned}$ | 1.590 | 1.590 | 1.590 | $\checkmark \checkmark$ |
|  | Motor proportional gain constant, factory set |  |  |  |  |  |  |  |
| H205 | Motor speed constant, 2nd motor |  |  | 0.001 to $9.999,10.00$ to 80.00 (10.000 to 80.000) | 1.590 | 1.590 | 1.590 | $\checkmark \checkmark$ |
|  | Motor proportional gain constant, factory set |  |  |  |  |  |  |  |
| H006 | Motor stabilization constant, 1st motor |  |  | 0. to 255. (factory set) | 100. | 100. | 100. | $\boldsymbol{V}$ |
| H206 | Motor stabilization constant, 2nd motor |  |  | 0. to 255. (factory set) | 100. | 100. | 100. | $\checkmark \checkmark$ |
| H306 | Motor stabilization constant, 3rd motor |  |  | 0. to 255. (factory set) | 100. | 100. | 100. | $\boldsymbol{V}$ |
| H020 | Motor constant R1, 1st motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) | According to inverter rating |  |  | $x \times$ |
| H220 | Motor constant R1, 2nd motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) |  |  |  | $\boldsymbol{x} \times$ |
| H021 | Motor constant R2, 1st motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) |  |  |  | $\boldsymbol{x} \times$ |
| H221 | Motor constant R2, 2nd motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) |  |  |  | $\boldsymbol{x} \times$ |
| H022 | Motor constant L, 1st motor |  |  | 0.01 to $99.99,100.0-655.3(\mathrm{mH})$ | According to inverter rating |  |  | $x \times$ |
| H222 | Motor constant L, 2nd motor |  |  | 0.01 to 99.99, 100.0-655.3 (mH) |  |  |  | $x \times$ |
| H023 | Motor constant $\mathrm{I}_{0}$, 1st motor |  |  | 0.01 to $99.99,100.0-655.3$ (A) |  |  |  | $\boldsymbol{x} \times$ |
| H223 | Motor constant $\mathrm{I}_{0}$, 2nd motor |  |  | 0.01 to $99.99,100.0-655.3$ (A) |  |  |  | $x \times$ |
| H024 | Motor Constant J, 1st motor |  |  | 0.001 to $9.999,10.00$ to $99.99,100.0$ to 999.9, 1000 to 9999. (ratio, unit-less) | According to inverter rating |  |  | $\boldsymbol{x} \times$ |
| H224 | Motor constant J, 2nd motor |  |  | 0.001 to $9.999,10.00$ to $99.99,100.0$ to 999.9, 1000 to 9999 . (ratio, unit-less) |  |  |  | $\boldsymbol{x} \boldsymbol{X}$ |
| H030 | Auto-tuned motor constant R1, 1st motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) | According to inverter rating |  |  | $x \times$ |
| H230 | Auto-tuned motor constant R1, 2nd motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) |  |  |  | $x \times$ |
| H031 | Auto-tuned motor constant R2, 1st motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) | According to inverter rating |  |  | $\boldsymbol{x} \times$ |
| H231 | Auto-tuned motor constant R2, 2nd motor |  |  | 0.001 to $9.999,10.00$ to 65.53 (Ohms) |  |  |  | $x \times$ |
| H032 | Auto-tuned motor constant L, 1st motor |  |  | 0.01 to $99.99,100.0$ to $655.3(\mathrm{mH})$ | According to inverter rating |  |  | $\boldsymbol{x} \times$ |
| H232 | Auto-tuned motor constant L, 2nd motor |  |  | 0.01 to $99.99,100.0$ to $655.3(\mathrm{mH})$ |  |  |  | $\boldsymbol{x} \times$ |
| H033 | Auto-tuned motor constant $\mathrm{I}_{0}, 1$ st motor |  |  | 0.01 to $99.99,100.0$ to $655.3(\mathrm{mH})$ | According to inverter rating |  |  | $\boldsymbol{x} \times$ |
| H233 | Auto-tuned motor constant $\mathrm{I}_{0}$, 2nd motor |  |  | 0.01 to $99.99,100.0$ to $655.3(\mathrm{mH})$ |  |  |  | $\mathbf{x} \times$ |
| H034 | Auto-tuned motor constant J, 1st motor |  |  | 0.001 to $9.999,10.00$ to $99.99,100.0$ to 999.9, 1000 to 9999. (ratio, unit-less) | According to inverter rating |  |  | $\boldsymbol{x} \times$ |
| H234 | Auto constant J, 2nd motor |  |  | 0.001 to $9.999,10.00$ to $99.99,100.0$ to 999.9, 1000 to 9999 . (ratio, unit-less) |  |  |  | $\boldsymbol{x} \times$ |
| H050 | PI proportional gain for 1st motor |  |  | 0.0 to 999.9, 1000. | 100.0 | 100.0 | 100.0 | $\checkmark \checkmark$ |
| H250 | PI proportional gain for 2 nd motor |  |  | 0.0 to 999.9, 1000. | 100.0 | 100.0 | 100.0 | $\checkmark \checkmark$ |
| H051 | PI integral gain for 1st motor |  |  | 0.0 to 999.9, 1000. | 100.0 | 100.0 | 100.0 | $\checkmark \checkmark$ |
| H251 | PI integral gain for 2nd motor |  |  | 0.0 to 999.9, 1000. | 100.0 | 100.0 | 100.0 | $\checkmark \checkmark$ |
| H052 | P proportional gain setting for 1 st motor |  |  | 0.01 to 10.00 | 1.00 | 1.00 | 1.00 | $\checkmark \checkmark$ |
| H252 | P proportional gain setting for 2 nd motor |  |  | 0.01 to 10.00 | 1.00 | 1.00 | 1.00 | $\checkmark \checkmark$ |
| H060 | 0 Hz SLV limit for 1 st motor |  |  | 0.0 to 100.0 | 100. | 100. | 100. | $\checkmark \checkmark$ |


| Func. Code | Name/ Description | Key | pad | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| H260 | 0Hz SLV limit for 2nd motor |  |  | 0.0 to 100.0 | 100. | 100. | 100. | $\checkmark \checkmark$ |
| H061 | 0 Hz SLV starting boost current for 1st motor |  |  | 0. to 50. (\%) | 100. | 100. | 100. | $\checkmark \checkmark$ |
| H261 | 0 Hz SLV starting boost current for 2nd motor |  |  | 0. to 50. (\%) | 100. | 100. | 100. | $\checkmark \checkmark$ |
| H070 | Terminal selection PI proportional gain setting |  |  | 0.0 to 999.9, 1000 | 100.0 | 100.0 | 100.0 | $\checkmark \checkmark$ |
| H071 | Terminal selection PI integral gain setting |  |  | 0.00 to $999.9,1000$. | 100.0 | 100.0 | 100.0 | $\checkmark \checkmark$ |
| H072 | Terminal selection P proportional gain setting |  |  | 0.00 to 10.00 | 1.00 | 1.00 | 1.00 | $\checkmark \checkmark$ |
| H073 | Gain switching time |  |  | 0. to 999. (milliseconds) | 100. | 100. | 100. | $\checkmark v$ |

## "P" Group: Expansion Card Functions

The two (optional) expansion cards for the SJ700 have associated configuration data. The following table defines the functions and their value ranges. Please refer to the expansion card manual for more details.

| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| P001 | Operation mode on expansion card 1 error | TRP | 00 | Trip (stop motor) | 00 | 00 | 00 | $x \checkmark$ |
|  |  | RUN | 01 | Continuous operation |  |  |  |  |
| P002 | Operation mode on expansion card 2 error | TRP | 00 | Trip (stop motor) | 00 | 00 | 00 | $x v$ |
|  |  | RUN | 01 | Continuous operation |  |  |  |  |
| P011 | Encoder pulse-per-revolution (PPR) setting |  |  | 128 to 65000 (pulses per revolution) | 1024 | $1024$ | 1024 | $x x$ |
| P012 | Control pulse setting | ASR | 00 | Automatic Speed Regulation (ASR) mode | 00 | 00 | 00 | $x \times$ |
|  |  | APR | 01 | Automatic Position Regulation (APR) mode |  |  |  | $x \times$ |
|  |  | APR2 | 02 | Absolute Position Control |  |  |  | x $\times$ |
|  |  | HAPR | 03 | High-resolution Absolute Position Control |  |  |  | $x \times$ |
| P013 | Pulse input mode setting | MD0 | 00 | Quadrature mode | 00 | 00 | 00 | $x \times$ |
|  |  | MD1 | 01 | Count and direction |  |  |  |  |
|  |  | MD2 | 02 | Separate forward and reverse pulse trains |  |  |  |  |
| P014 | Home search stop position setting |  |  | 0. to 4095. (pulses) | 0. | 0. | 0. | $x v$ |
| P015 | Home search speed setting |  |  | Start frequency to maximum frequency (up to 120.0$)(\mathrm{Hz})$ | 5.00 | 5.00 | 5.00 | $x \vee$ |
| P016 | Home search direction setting | FW | 00 | Forward | 00 | 00 | 00 | x $\times$ |
|  |  | RV | 01 | Reverse |  |  |  | x $\times$ |
| P017 | Home search completion range setting |  |  | 0. to 9999., $1000(10,000)$ (pulses) | 5 | 5 | 5 | $x v$ |
| P018 | Home search completion delay time setting |  |  | 0.00 to 9.99 (seconds) | 0.00 | 0.00 | 0.00 | $x v$ |
| P019 | Electronic gear set position selection | FB | 00 | Position feedback side | 00 | 00 | 00 | $x v$ |
|  |  | REF | 01 | Position command side |  |  |  | $x \nu$ |
| P020 | Electronic gear ratio numerator setting |  |  | 0. to 9999. | 1. | 1. | 1. | $x v$ |
| P021 | Electronic gear ratio denominator setting |  |  | 1 to 9999 | 1. | 1. | 1. | $x v$ |
| P022 | Feed-forward gain setting |  |  | 0.00 to $99.99,100.0$ to 655.3 | 0.00 | 0.00 | 0.00 | $x v$ |
| P023 | Position loop gain setting |  |  | 0.00 to 99.99, 100.0 | 0.50 | 0.50 | 0.50 | $x v$ |
| P024 | Position bias setting |  |  | -204 (-2048) / -999. to 2048 | 0. | 0. | 0. | $x \nu$ |
| P025 | Temperature compensation thermistor enable | OFF | 00 | No compensation | 00 | 00 | 00 | $x v$ |
|  | Allows for motor-mounted thermistor to calibrate output to motor temperature | ON | 01 | With compensation |  |  |  |  |
| P026 | Over-speed error detection level setting |  |  | 0.0 to 150.0 (\%) | 135.0 | 135.0 | 135.0 | $x v$ |
| P027 | Speed deviation error detection level setting |  |  | 0.00 to 99.99, 100.0 to $120.0(\mathrm{~Hz})$ | 7.50 | 7.50 | 7.50 | $x v$ |
| P028 | Motor gear ratio numerator setting |  |  | 0. to 9999. | 1. | 1. | 1. | $x \checkmark$ |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| P029 | Motor gear ratio denominator setting |  |  | 1 to 9999 | 1. | 1. | 1. | $x v$ |
| P031 | Accel/decel time input selection | REM | 00 | Inverter | 00 | 00 | 00 | $x \times$ |
|  |  | OP1 | 01 | Expansion card 1 |  |  |  |  |
|  |  | OP2 | 02 | Expansion card 2 |  |  |  |  |
| P032 | Positioning command input selection | REM | 00 | Inverter | 00 | 00 | 00 | $x v$ |
|  |  | OP1 | 01 | Expansion card 1 |  |  |  |  |
|  |  | OP2 | 02 | Expansion card 2 |  |  |  |  |
| P033 | Torque command input selection | 0 | 00 | [O] terminal | 00 | 00 | 00 | $x \times$ |
|  |  | OI | 01 | [OI] terminal |  |  |  |  |
|  |  | 02 | 02 | [O2] terminal |  |  |  |  |
|  |  | REM | 03 | Inverter keypad (P034) |  |  |  |  |
| P034 | Torque command setting |  |  | 0. to 180. (\%) | 0. | 0. | 0. | $x \times$ |
| P035 | Torque command polarity select | NOR | 00 | Indicated by signal polarity at [O2] terminal | 00 | 00 | 00 | $\boldsymbol{x} \times$ |
|  |  | DIR | 01 | Depends on motor direction |  |  |  |  |
| P036 | Torque bias mode | NO | 00 | Disable | 00 | 00 | 00 | x $\times$ |
|  |  | DIR | 01 | Inverter keypad (P037) |  |  |  |  |
|  |  | NOR | 02 | [O2] terminal input |  |  |  |  |
| P037 | Torque bias value |  |  | 0. to 180. (\%) | 0. | 0. | 0. | $x \times$ |
| P038 | Torque bias polarity | NOR | 00 | Indicated by polarity | 00 | 00 | 00 | $x v$ |
|  |  | DIR | 01 | Depends on motor direction |  |  |  |  |
| P039 | Forward speed limit for torque-control mode |  |  | 0.00 to maximum frequency (Hz) | 0.00 | 0.00 | 0.00 | $x \times$ |
| P040 | Reverse speed limit for torque-control mode |  |  | 0.00 to maximum frequency (Hz) | 0.00 | 0.00 | 0.00 | x $\times$ |
| P044 | DeviceNet comm watchdog timer |  |  | 0.00 to 99.99 (seconds) | 1.00 | 1.00 | 1.00 | X $\times$ |
| P045 | Inverter action on DeviceNet comm error | TRP | 00 | Trip | 01 | 01 | 01 | $x \times$ |
|  |  | FTP | 01 | Decelerate and trip |  |  |  |  |
|  |  | NO | 02 | Hold last speed |  |  |  |  |
|  |  | FRS | 03 | Free run stop |  |  |  |  |
|  |  | DEC | 04 | Decelerate and stop |  |  |  |  |
| P046 | DeviceNet polled I/O: Output instance number |  |  | 20, 21, 100 | 21 | 21 | 21 | x $\times$ |
| P047 | DeviceNet polled I/O: Input instance number |  |  | 70, 71, 101 | 71 | 71 | 71 | x $\times$ |
| P048 | Inverter action on DeviceNet idle mode | TRP | 00 | Trip | 01 | 01 | 01 | $x \times$ |
|  |  | FTP | 01 | Decelerate and trip |  |  |  |  |
|  |  | NO | 02 | Hold last speed |  |  |  |  |
|  |  | FRS | 03 | Free run stop |  |  |  |  |
|  |  | DEC | 04 | Decelerate and stop |  |  |  |  |
| P049 | DeviceNet motor poles setting for RPM | poles | poles | 00 to 38 (even numbers only) | 0 | 0 | 0 | $\mathbf{x} \times$ |


| Func. Code | Name/ Description | Keypad |  | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SRW | OPE |  | $\begin{gathered} \text { FEF2 } \\ \text { FE2 } \\ \text { (EU) } \end{gathered}$ | $\begin{gathered} \text { FUF2 } \\ \text { FU2 } \\ \text { (USA) } \end{gathered}$ | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ \text { (Jpn) } \end{gathered}$ |  |
| P055 | Pulse train frequency scale |  |  | 1.0 to 50.0 (kHz) | 25.0 | 25.0 | 25.0 | $x \checkmark$ |
| P056 | Pulse train frequency filter time constant |  |  | 0.01 to 2.00 (seconds) | 0.10 | 0.10 | 0.10 | $x \vee$ |
| P057 | Pulse train frequency bias |  |  | -100. to 100. (\%) | 0. | 0. | 0. | $x \checkmark$ |
| P058 | Pulse train frequency limit |  |  | 0. to 100. (\%) | 100. | 100. | 100. | $x \checkmark$ |
| $\begin{array}{\|l\|} \hline \text { P060 } \\ \text { to } \\ \text { P067 } \end{array}$ | Multi-stage position setting 0 to Multi-stage position setting 7 |  |  | Reverse side to forward side (upper four digits including sign "-") | 0 | 0 | 0 | $\checkmark \checkmark$ |
| P068 | Zero-return mode selection | LOW | 00 | Low speed | 00 | 00 | 00 | $\checkmark \checkmark$ |
|  |  | Hi1 | 01 | High speed |  |  |  |  |
|  |  | Hi2 | 02 | High speed 2 |  |  |  |  |
| P069 | Zero return direction selection | FW | 00 | Forward | 00 | 00 | 00 | $\checkmark \checkmark$ |
|  |  | RW | 01 | Reverse |  |  |  |  |
| P070 | Low speed zero return frequency |  |  | 0.00 to $10.00(\mathrm{~Hz})$ | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
| P071 | High speed zero return frequency |  |  | 0.00 to 99.99 / 100.0 to maximum frequency setting, 1st motor (Hz) | 0.00 | 0.00 | 0.00 | $\checkmark \checkmark$ |
| P072 | Forward position range |  |  | 0 to 268435455 (when P012 = 02), 0 to 1073741823 (when P013 = 03) (upper four digits) | 268435455 |  |  | $\checkmark \checkmark$ |
| P073 | Reverse position range |  |  | $\begin{aligned} & -268435455 \text { to } 0 \text { (when P012 }=02 \text { ), } \\ & 1073741823 \text { to } 0 \text { (when P013 }=03 \text { ) } \\ & \text { (upper four digits) } \end{aligned}$ | -268435455 |  |  | $\checkmark \checkmark$ |
| P074 | Teaching selection | X00 | 00 | X00 | 00 | 00 | 00 | $v v$ |
|  |  | X01 | 01 | X01 |  |  |  |  |
|  |  | X02 | 02 | X02 |  |  |  |  |
|  |  | X03 | 03 | X03 |  |  |  |  |
|  |  | X04 | 04 | X04 |  |  |  |  |
|  |  | X05 | 05 | X05 |  |  |  |  |
|  |  | X06 | 06 | X06 |  |  |  |  |
|  |  | X07 | 07 | X07 |  |  |  |  |
| $\begin{array}{\|l\|} \hline \text { P100 } \\ \text { to } \\ \text { P131 } \end{array}$ | Easy sequence user parameters $\mathrm{U}(00)$ to U(31) |  |  | 0. to 9999., 1000 to 6553 (10000 to 65535) | 0. | 0. | 0. | $\checkmark \checkmark$ |

NOTE: Parameters P044 to P049 are available only in inverters with manufacturing code x8K xxxxxx xxxxx or later. The manufacturing code is printed on the product specifications labels, located on the front and side of the inverter housing.

## Absolute Position Control Mode

To use the absolute position control mode, set A044 V/F characteristic curve setting (1st motor) equal to " 02 " (V2) and set P012 Control Pulse Setting equal to " 02 " APR - Automatic Position Control Mode.

- If P012 = 03 (high-resolution absolute position control, the inverter quadruples the number of pulses used for positioning. In this case multiply the multistage position settings and position ranges by four.
- Position settings can be sequenced in up to eight stages in combination with control pulse settings. You can select zero-return mode from one low-speed and two high-speed modes. (The home search function cannot be used during a zero-return.)
- The teaching function allows you to set (store) position settings while actually running the machine (motor is turning).
- If intelligent terminal [SPD] Speed/position Control Select (option code 73) is assigned, you can switch between speed control and position control.
- Only the four high-order digits of data are displayed when the data (position setting) to be displayed consists of a large number of digits.

In Absolute Position Control Mode, the inverter runs the motor until the machine reaches the target position according to the following settings, and then set the machine into the position servo-lock state (until the Stop Command occurs):

1. Position setting
2. Speed setting (output frequency)
3. Acceleration and deceleration time

In absolute position control mode, the frequency and accel/decel settings selected at absolute position control are applied. If the position setting value is small, the inverter may decelerate the motor for positioning before its speed reached the set speed setting. In absolute position control mode, the direction of the operations command (forward or reverse) is ignored. The operation command simply functions as a signal to run or stop the motor. Motor direction is determined by the algebraic sign of the difference between the current position and the target position.


If zero return operation as described below is not performed, the motor position detected at powerup is assumed to be at the origin (position data $=0$ ). When the operation commend is turned ON with zero specified as the position setting, positioning is completed without running the motor.
Set C102 Reset Mode Selection $=03$ so that the inverter only resets a trip condition (does not turn OFF the motor output). Otherwise, the current position counter is cleared when the inverter reset terminal turns ON. Be sure to set C102 = 03 if you intend to use the value of the current position counter for operation after recovering the inverter from a trip by turning ON the reset terminal (reset key).

If intelligent terminal [PCLR] is assigned, when it is ON the current position counter is cleared and the position deviation counter is also cleared.
When the inverter is in Absolute Position Control Mode, some functions are necessarily disabled:

- Intelligent terminal [ATR] is ignored (because torque control is disabled)
- Intelligent terminal [STAT] is ignored (because pulse train position control is disabled)
- Home search function is disabled

Teaching Function

The teaching function allows you to make the inverter run and stop the motor as desired and store current position data to a position command memory location that you select. Assign the [ORT] Orientation function (option code 45) to an intelligent input. The [ORT] terminal functions as the teaching input terminal when P012 Control Pulse Setting is set to 02 (Absolute Position Control) or 03 (High-resolution Absolute Position Control).
The teaching procedure is as follows:

1. Select the teaching position memory location by setting P074.
2. Move the work piece or machine to the desired location. Enter an operation command while the [ORT] terminal is in the ON state. The speed and accel/decel settings selected at the operation command input are applied.


Teaching operation can be performed when power is input to the power supply terminals [R0] and [T0] of the inverter control circuit. The current position counter also operates when an external device moves the work piece. Therefore, the teaching operation can also be performed when the inverter does not operate (move) the machine.

NOTE: When teaching position data to an inverter that is not operating the machine, be sure to either disconnect input power terminals ( $[\mathrm{R}],[\mathrm{S}]$, and $[\mathrm{T}]$ ) or disconnect the motor output terminals ([U], [V], and [W]). Otherwise, personal injury or damage to equipment may result.
3. Press the STR key on the digital operator when the target position is reached.
4. The current position data is stored to the memory area selected by parameter P074 teaching selection. (P074 value itself is not stored. After power OFF or reset, 00 is stored.)

## "U" Group: User-selectable Menu Functions

The user-selectable menu functions allow you to configure (select) any twelve of the other functions in the inverter and place them together in a convenient list. This feature provides quick access for the most-used functions needed for your application. Each U Group function can serve as a pointer to any of the other parameters. You do not have to use the Store key to retain each association; just scroll to the desired standard parameter for each U Group function and leave it. The setting can point to a monitor-only parameter (such as D001), or point to editable parameters (such as A001). In the case of pointing to an editable functions, you use the Up/Down keys to change the value and the Store key to accept the change into memory-the same procedure as a normal parameter edit.

| Func. Code | Name/ Description | Range and Settings | Defaults |  |  | Run <br> Mode <br> Edit <br> Lo Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FEF2 <br> FE2 <br> (EU) | FUF2 <br> FU2 <br> (USA) | $\begin{gathered} \text { FF2 } \\ \text { F2 } \\ (\mathbf{J p n}) \end{gathered}$ |  |
| U001 | User function 1 | "no" (disabled), or any of the functions D001 to P049 | no | no | no | $x \checkmark$ |
| U002 | User function 2 |  | no | no | no | $x \checkmark$ |
| U003 | User function 3 |  | no | no | no | $x \checkmark$ |
| U004 | User function 4 |  | no | no | no | $x \checkmark$ |
| U005 | User function 5 |  | no | no | no | $x \checkmark$ |
| U006 | User function 6 |  | no | no | no | $x \checkmark$ |
| U007 | User function 7 |  | no | no | no | $x \checkmark$ |
| U008 | User function 8 |  | no | no | no | $x \checkmark$ |
| U009 | User function 9 |  | no | no | no | $x \checkmark$ |
| U010 | User function 10 |  | no | no | no | $x \checkmark$ |
| U011 | User function 11 |  | no | no | no | $x \checkmark$ |
| U012 | User function 12 |  | no | no | no | $x \checkmark$ |

TIP: Function B037 selects which parameter groups are displayed. If you want to limit the displayed parameters to only the U Group functions, set B037=02.

## Programming Error Codes

The SJ7002 inverter operator keypad displays a special code (begins with the 8 character) to indicate a programming error. Programming errors exist when one parameter conflicts with the meaningful range permitted by related parameter(s). Note that particular real-time frequency (speed) input levels can cause a conflict in some situations. After a conflict exists, the error code will appear on the display, or you can view it later with D090 in Monitor Mode. Also, the PGM LED on the display will flash ON/OFF when programming. These indications are automatically cleared when the parameter is corrected to the allowed range.

| Programming ErrorCode | Parameter out of bounds |  | Boundary defined by... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Code | Description | <, > | Code | Description |
| 80018201 | A8061 / A261 | Frequency upper limit setting; 1st, 2nd motor | > | $\begin{gathered} \hline \text { A004 } / \\ \text { A204 / } \\ \text { A304 } \end{gathered}$ | Maximum frequency; 1st, 2nd, 3rd motor |
| $8002 \quad 8202$ | A062 / A262 | Frequency lower limit setting; 1st, 2nd motor | > |  |  |
| $\begin{aligned} & 80048204 \\ & 8304 \end{aligned}$ | $\begin{aligned} & \text { A003/A203/ } \\ & \text { A303 } \end{aligned}$ | Base frequency setting; 1st, 2nd, 3rd motor (*1) | > |  |  |
| $\begin{aligned} & 4005 \\ & 8305 \end{aligned}$ | $\begin{aligned} & \text { F001, } \\ & \text { A020 / A220 / } \\ & \text { A320 } \end{aligned}$ | Output frequency setting, Multi-speed freq. setting; 1st, 2nd, 3rd motor (*2) | > |  |  |
| $\begin{aligned} & 40068206 \\ & 8306 \end{aligned}$ | A021 to A035 | Multi-speed freq. settings | > |  |  |
| 8009 | P015 | Home search speed setting | > |  |  |
| 80128212 | A062 / A262 | Frequency lower limit setting; 1st, 2nd motor | > | A061 / A261 | Frequency upper limit setting; 1st, 2nd motor |
| 80154215 | $\begin{array}{\|l\|} \hline \text { F001, } \\ \text { A020 / A220 } \end{array}$ | Output frequency setting, Multi-speed freq. setting; 1st, 2nd motor | > |  |  |
| ¢016؛216 | A021 to A035 | Multi-speed freq. settings | > |  |  |
| 8019 | A061 / A261 | Frequency upper limit setting; 1st, 2nd motor | $<$ | P015 | Home search speed setting |
| 80218221 |  |  | < | A062 / A262 | Frequency lower limit setting; 1 st, 2nd motor |
| $8025 \quad 8225$ | $\begin{aligned} & \text { F001, } \\ & \text { A020 / A220 } \end{aligned}$ | Output frequency setting, Multi-speed freq. setting; 1st, 2nd motor (*2) | $<$ |  |  |
| ¢031ヶ231 | A061 / A261 | Frequency upper limit setting; 1st, 2nd motor | $<$ | B082 | Start frequency adjustment |
| $8032 \quad 8232$ | A062 / A262 | Frequency lower limit setting; 1st, 2nd motor | $<$ |  |  |
| $\begin{aligned} & 4035 \\ & 4335 \\ & 4335 \end{aligned}$ | $\begin{aligned} & \text { F001, } \\ & \text { A020/A220 / } \\ & \text { A320 } \end{aligned}$ | Output frequency setting, Multi-speed freq. setting; 1st, 2nd, 3rd motor | < |  |  |
| 8036 | A021 to A035 | Multi-speed freq. settings | $<$ |  |  |
| 8037 | A038 | Jog frequency setting | $<$ |  |  |


| Programming ErrorCode | Parameter out of bounds |  | Boundary defined by... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Code | Description | <, > | Code | Description |
| $\begin{aligned} & 4085 \quad 4285 \\ & 4385 \end{aligned}$ | $\begin{aligned} & \text { F001, } \\ & \text { A020/A220/ } \\ & \text { A320 } \end{aligned}$ | Output frequency setting, Multi-speed freq. setting; 1st, 2nd, 3rd motor | $\begin{aligned} & >f-x, \\ & <f+x \end{aligned}$ | $\begin{aligned} & \mathrm{A} 063 \pm \mathrm{A} 064 \\ & \mathrm{~A} 065 \pm \text { A066 } \\ & \text { A067 } \pm \text { A068 } \end{aligned}$ | Jump (center) frequency $\pm$ jump (hysteresis) frequency width setting <br> (See note after table) |
| 8086 | A021 to A035 | Multi-speed freq. settings | $\begin{aligned} & >f-x, \\ & <f+x \end{aligned}$ |  |  |


| Programming ErrorCode | Parameter out of bounds |  | Boundary defined by... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Code | Description | <, > | Code | Description |
| ¢091 291 | A061 / A261 | Frequency upper limit setting; 1st, 2nd motor | > | B112 | Free-setting V/f frequency (7) |
| $8092 \quad 8292$ | A062 / A262 | Frequency lower limit setting; 1st, 2nd motor | > |  |  |
| ¿095 6295 | $\begin{aligned} & \text { F001, } \\ & \text { A020 / A220 } \end{aligned}$ | Output frequency setting, Multi-speed freq. setting; 1st, 2nd motor | > |  |  |
| 8096 | A021 to A035 | Multi-speed freq. settings | > |  |  |
| ¢110 | B100, B102, B104, B106, B108, B110 | Free V/f frequency | > |  |  |
|  | $\begin{aligned} & \text { B102, B104, } \\ & \text { B106, B108, } \\ & \text { B110 } \end{aligned}$ | Free V/f frequency | > | B100 | Free-setting V/f frequency (1) |
|  | B100 | Free V/f frequency | $<$ | B102 | Free-setting V/f frequency (2) |
|  | $\begin{aligned} & \text { B104, B106, } \\ & \text { B108, B110 } \end{aligned}$ | Free V/f frequency | > |  |  |
|  | B100, B102 | Free V/f frequency | $<$ | B104 | Free-setting V/f frequency (3) |
|  | $\begin{aligned} & \text { B106, B108, } \\ & \text { B110 } \end{aligned}$ | Free V/f frequency | > |  |  |
|  | $\begin{aligned} & \text { B100, B102, } \\ & \text { B104 } \end{aligned}$ | Free V/f frequency | < | B106 | Free-setting V/f frequency (4) |
|  | B108, B110 | Free V/f frequency | > |  |  |
|  | $\begin{aligned} & \text { B100, B102, } \\ & \text { B104, B106 } \end{aligned}$ | Free V/f frequency | < | B108 | Free-setting V/f frequency (5) |
|  | B110 | Free V/f frequency | > |  |  |
|  | B100, B102, <br> B104, B106, <br> B108 | Free V/f frequency | < | B110 | Free-setting V/f frequency (6) |
| 8120 | B017, B019 | Free-setting electronic thermal frequency | $<$ | B015 | Free-setting, electronic thermal frequency (1) |
|  | B015 | Free-setting electronic thermal frequency | > | B017 | Free-setting, electronic thermal frequency (2) |
|  | B019 | Free-setting electronic thermal frequency | $<$ |  |  |
|  | B015, B017 | Free-setting electronic thermal frequency | > | B019 | Free-setting, electronic thermal frequency (3) |

Note 1: The base frequency is written when you store the parameter. If the new base frequency value is outside the permissible range, a motor burnout may result. Therefore, if the warning occurs, change the base frequency to an appropriate value.
Note 2: These parameters are checked even when the digital operator (option code 02) is not specified for the frequency source setting (A001).
Note 3: Set frequency (speed) values are not permitted to be inside the jump frequency ranges, if defined. When a frequency reference value from a real-time source (such as keypad potentiometer or analog input) are inside a jump frequency range, the actual speed is automatically forced to equal the lowest point of the jump range.

## Operations and Monitoring

In This Chapter.... page

- Introduction ..... 2
- Optional Controlled Decel and Alarm at Power Loss ..... 4
- Connecting to PLCs and Other Devices ..... $\underline{7}$
- Using Intelligent Input Terminals ..... 13
- Using Intelligent Output Terminals ..... 43
- Analog Input Operation ..... 63
- Analog Output Operation ..... 66
- Setting Motor Constants for Vector Control ..... 69
- PID Loop Operation ..... 75
- Configuring the Inverter for Multiple Motors ..... 76


## Introduction

The previous material in Chapter 3 gave a reference listing of all the programmable functions of the inverter. We suggest that you first scan through the listing of inverter functions to gain a general familiarity. This chapter will build on that knowledge in the following ways:

1. Related functions - Some parameters interact with or depend on the settings in other functions. This chapter lists "required settings" for a programmable function to serve as a cross-reference and an aid in showing how functions interact.
2. Intelligent terminals - Some functions rely on an input signal from control logic terminals or generate output signals in other cases.
3. Electrical interfaces - This chapter shows how to make connections between the inverter and other electrical devices.
4. Auto-tuning - The SJ7002 inverter has the ability to run a calibration procedure in which it takes measurements of the motor's electrical characteristics. This chapter shows how to run the auto-tuning procedure to help the inverter run the motor more smoothly and efficiently.
5. PID Loop Operation - The SJ7002 has a built-in PID loop that calculates the optimal inverter output frequency to control an external process. This chapter shows the parameters and input/output terminals associated with PID loop operation.
6. Multiple motors - A single SJ7002 inverter may be used with two or more motors in some types of applications. This chapter shows the electrical connections and inverter parameters involved in multiple-motor applications.

The topics in this chapter can help you decide the features that are important to your application, and how to use them. The basic installation covered in Chapter 2 concluded with the powerup test and running the motor. Now, this chapter starts from that point and shows how to make the inverter part of a larger control or automation system.
Before continuing, please read the following Caution messages.

CAUTION: The heat sink fins will have a high temperature. Be careful not to touch them. Otherwise, there is the danger of getting burned.

CAUTION: The operation of the inverter can be easily changed from low speed to high speed. Be sure check the capability and limitations of the motor and machine before operating the inverter. Otherwise, it may cause injury to personnel.

CAUTION: If you operate a motor at a frequency higher than the inverter standard default setting $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$, be sure to check the motor and machine specifications with the respective manufacturer. Only operate the motor at elevated frequencies after getting their approval. Otherwise, there is the danger of equipment damage.

Before continuing, please read the following Warning messages.

## Operating

Warnings for Procedures


WARNING: Be sure to turn ON the input power supply only after closing the front case. While the inverter is energized, be sure not to open the front case. Otherwise, there is the danger of electric shock.

WARNING: Be sure not to operate electrical equipment with wet hands. Otherwise, there is the danger of electric shock.

WARNING: While the inverter is energized, be sure not to touch the inverter terminals even when the motor is stopped. Otherwise, there is the danger of electric shock.

WARNING: If the Retry Mode is selected, the motor may suddenly restart after a trip stop. Be sure to stop the inverter before approaching the machine (be sure to design the machine so that safety for personnel is secure even if it restarts.) Otherwise, it may cause injury to personnel.

WARNING: If the power supply is cut OFF for a short period of time, the inverter may restart operation after the power supply recovers if the Run command is active. If a restart may pose danger to personnel, so be sure to use a lock-out circuit so that it will not restart after power recovery. Otherwise, it may cause injury to personnel.

WARNING: The Stop Key is effective only when the Stop function is enabled. Be sure to enable the Stop Key separately from the emergency stop. Otherwise, it may cause injury to personnel.

WARNING: During a trip event, if the alarm reset is applied and the Run command is present, the inverter will automatically restart. Be sure to apply the alarm reset only after verifying the Run command is OFF. Otherwise, it may cause injury to personnel.

WARNING: Be sure not to touch the inside of the energized inverter or to put any conductive object into it. Otherwise, there is a danger of electric shock and/or fire.

WARNING: If power is turned ON when the Run command is already active, the motor will automatically start and injury may result. Before turning ON the power, confirm that the RUN command is not present.

WARNING: When the Stop key function is disabled, pressing the Stop key does not stop the inverter, nor will it reset a trip alarm.

WARNING: Be sure to provide a separate, hard-wired emergency stop switch when the application warrants it.

## Optional Controlled Decel and Alarm at Power Loss

With the default SJ7002 inverter configuration, a sudden power loss will cause the inverter to shut down immediately. If running at the time, the motor and load will coast to a stop. And without power, the inverter's alarm output will not activate. This default performance may be fine for applications with loads such as fans and pumps. However, some loads may require controlled decelerations upon power loss, or you may want an alarm signal upon power loss. This section describes how to harness regenerative energy so that the motor/load actually powers the inverter long enough to control a final deceleration and power the alarm output.

The diagram below shows the default configuration. Chapter 2 covered wiring the power source to the inverter input and the inverter output to the motor. By default, the inverter's internal control circuit gets its power from two phases ( R and T ) from the input. The user-accessible 2-wire jumper ( $\mathrm{R}-\mathrm{R} 0$ and $\mathrm{T}-\mathrm{T} 0$ ) connects input power to the control circuit.


To provide power to the control circuit after input power loss, you must change the control circuit wiring as shown below (steps provided on following page).


Follow the steps to implement the wiring change shown in the previous diagram.

1. Remove the 2-wire jumper J51 (terminals [R0] and [T0] to connector J51).
2. Procure several inches of multi-strand 20 AWG $\left(0.5 \mathrm{~mm}^{2}\right)$ or slightly heavier wire.
3. Connect a wire to terminal $[\mathrm{R} 0]$ that is long enough to connect to terminal $[\mathrm{P}]$ (do not connect to [P] yet).
4. Connect a wire to terminal [T0] that is long enough to connect to terminal [ N$]$ (do not connect to [ N$]$ yet).
5. Remove the ferrite filter from the original jumper wire and then slide it onto the new wires connecting to terminals [R0] and [T0]. (Be sure to save the original jumper in a safe place.)
6. Connect the wire from $[\mathrm{R} 0]$ to $[\mathrm{P}]$, and connect the wire from $[\mathrm{T} 0]$ to $[\mathrm{N}]$ as shown.

More information on power loss related alarm functions, see "Instantaneous Power Failure / Under-voltage Signal" on page 4-48.

The following table lists the functions related to the controlled deceleration at power loss feature. After making the wiring change, use function B050 to enable the feature. Use B051 to determine the point at which a decaying DC bus voltage will trigger the controlled deceleration. Use parameter B054 to specify an initial step-wise deceleration at power loss, and B053 to specify the duration of the linear deceleration. Note that this feature also affects the output signals that indicate instantaneous power fail and under-voltage conditions (see "Instantaneous Power Failure / Under-voltage Signal" on page 4-48).

| Func. <br> Code | Name | Description | Range |
| :---: | :--- | :--- | :--- |
| B050 | Controlled deceleration and <br> stop on power loss | Allows inverter control using regen- <br> erative energy to decelerate after loss <br> of input power (requires jumper <br> change) | Two option codes: <br> 00Disable <br> 01Enable |
| B051 | DC bus voltage trigger level <br> during power loss | Sets trigger for controlled decelera- <br> tion and stop on power loss function | 0.0 to $1000 . \mathrm{V}$ |
| B052 | Over-voltage threshold during <br> power loss | Sets over-voltage threshold for <br> controlled deceleration function | 0.0 to $1000 . \mathrm{V}$ |
| B053 | Deceleration time setting <br> during power loss | Deceleration time inverter uses only <br> at power loss | 0.01 to $99.99 \mathrm{sec} . /$ <br> 100.0 to $999.9 \mathrm{sec} . /$ |
| B054 | Initial output frequency <br> decrease during power loss | Sets the initial decrease in output <br> frequency upon power loss | 0.00 to 10.00 Hz |

The timing diagram below shows a power loss scenario and the related parameter settings. During the controlled deceleration the inverter itself acts as a load to decelerate the motor. With either a high-inertia load or a short deceleration time (or both), it is possible that the inverter impedance will not be low enough to continue linear deceleration and avoid an over-voltage condition on the DC bus. Use parameter B052 to specify a threshold for the over-voltage. In this case, the inverter pauses deceleration (runs at constant speed). When the DC bus decays again below the threshold, linear deceleration resumes. The pause/resume process will repeat as necessary until the DC bus energy is depleted (under-voltage condition occurs).


NOTE: (1) Be sure to set the over-voltage threshold greater than the DC bus voltage trigger level (B052 > B051) for proper operation.
(2) Once the power loss deceleration function starts, it will complete and stop the motor even if input power is restored. In that case, it automatically enables the Run mode again.

## Connecting to PLCs and Other Devices

Hitachi inverters (drives) are useful in many types of applications. During installation, the inverter keypad (or other programming device) will facilitate the initial configuration. After installation, the inverter will generally receive its control commands through the control logic terminals or serial interface from another controlling device. In a simple application such as single-conveyor speed control, a Run/Stop switch and potentiometer will give the operator all the required control. In a sophisticated application, you may have a programmable logic controller (PLC) as the system controller with several connections to the inverter.

It is not possible to cover all the possible types of application in this manual. It will be necessary for you to know the electrical characteristics of the devices you want to connect to the inverter. Then, this section and the following sections on I/O terminal functions can help you quickly and safely connect those devices to the inverter.

CAUTION: It is possible to damage the inverter or other devices if your application exceeds the maximum current or voltage characteristics of a connection point.

The connections between the inverter and other devices rely on the electrical input/output characteristics at both ends of each connection, shown in the diagram to the right. The inverter can accept either sourcing or sinking type inputs from an external device (such as a PLC). A terminal jumper configures the input type, connecting the input circuit common to the supply ( + ) or ( - ). Detailed wiring examples are in "Using Intelligent Input Terminals" on page 413. This chapter shows the inverter's internal electrical component(s) at each I/O terminal and how to interface them with external circuits.

In order to avoid equipment damage and get your application running smoothly, we recommend drawing a schematic of each connection between the inverter and the other device. Include the internal components of each device in the schematic, so that it makes a complete circuit loop.
After making the schematic, then:

1. Verify that the current and voltage for each connection is within the operating limits of each device.
2. Make sure that the logic sense (active high or active low) of any ON/OFF connection is correct.
3. Verify inputs are configured
 correctly (sink/source) to interface to interface to any external devices (PLCs, etc.).
4. Check the zero and span (curve end points) for analog connections, and be sure the scale factor from input to output is correct.
5. Understand what will happen at the system level if any particular device suddenly loses power, or powers up after other devices.

## Example Wiring Diagram

The schematic diagram below provides a general example of logic connector wiring, in addition to basic power and motor wiring covered in Chapter 2. The goal of this chapter is to help you determine the proper connections for the various terminals shown below for your specific application needs.


Specifications of Control and Logic Connections

The control logic connector board is removable for wiring convenience as shown below (first, remove two retaining screws). The small connector to the left is for serial communications.


Specifications for the logic connection terminals are in the following table:

| Terminal Name | Description | Ratings and Notes |
| :---: | :---: | :---: |
| [P24] | +24 V power for inputs | 24VDC supply, 100 mA max. |
| [CM1] | +24 V common | Common for 24 V supply, [FW], [TH], inputs [1] to [8], and [FM]. (Note: Do not ground) |
| [PLC] | Common for logic inputs | Common for input terminals [1] to [8], jumper to CM1 for sinking, jumper to P24 for sourcing |
| [CM2] | Common for logic outputs | Common for output terminals [11] to [15] |
| $\begin{gathered} {[1],[2],[3],[4],[5],} \\ {[6],[7],[8]} \end{gathered}$ | Intelligent (programmable) discrete logic inputs | 27VDC max. (use [P24] or an external supply referenced to terminal [CM1]), $4.7 \mathrm{k} \Omega$ input impedance |
| [FW] | Forward/stop command | 27VDC max. (use [P24] or an external supply referenced to terminal [CM1]), $4.7 \mathrm{k} \Omega$ input impedance |
| $\begin{gathered} {[11],[12],[13],} \\ {[14],[15]} \end{gathered}$ | Intelligent (programmable) discrete logic outputs | Open collector type, 50 mA max. ON state current, 27 VDC maximum OFF state voltage |
| [TH] | Thermistor input | Reference to [CM1], min. thermistor power 100mW |
| [FM] | PWM output | 0 to 10VDC, 1.2 mA max., $50 \%$ duty cycle |
| [AM] | Voltage analog output | 0 to 10VDC, 2 mA max. |
| [AMI] | Current analog output | 4-20 mA, nominal load impedance $250 \Omega$ |
| [L] | Common for analog inputs | Sum of [OI], [O], and [H] currents (return) |
| [OI] | Analog input, current | 4 to 19.6 mA range, 20 mA nominal, $100 \Omega$ input impedance |
| [O] | Analog input, voltage | 0 to 9.6 VDC range, 10VDC nominal, 12VDC max., input impedance $10 \mathrm{k} \Omega$ |
| [O2] | Analog input, voltage 2 | $-9.6 \text { to } 9.6 \mathrm{VDC} \text { range, } \pm 10 \mathrm{VDC} \text { nominal, } \pm 12 \mathrm{VDC}$ max., input impedance $10 \mathrm{k} \Omega$ |
| [H] | +10 V analog reference | 10VDC nominal, 10 mA max. |
| [AL0] | Relay common contact | Contacts AL0-AL1, maximum loads: |
| [AL1] | Relay contact, normally closed | 250VAC, 2A; 30VDC, 8A resistive load $250 \mathrm{VAC}, 0.2 \mathrm{~A} ; 30 \mathrm{VDC}, 0.6 \mathrm{~A}$ inductive load Contacts AL0-AL2, maximum loads: |
| [AL2] | Relay contact, normally open | 250VAC, 1A; 30VDC 1A max. resistive load 250VAC, 0.2 A ; 30VDC, 0.2A max. inductive load Min. loads: 100 VAC, $10 \mathrm{~mA} ; 5 \mathrm{VDC}, 100 \mathrm{~mA}$ |

Be sure to keep the control logic wiring separated from the power terminal wiring. In the case of model -3150 Hxx , the drawing below shows how route control circuit wiring.

1. Separate the control circuit wiring into two bundles to make use of available space.
2. Route the wiring from the control terminal block to the wiring plate. Continue routing past the PCB attachment plate to the wiring exit area.
3. Secure the control wiring to the PCB attachment plate with cable ties.


Input Terminal Listing

Use the following table to locate pages for intelligent input material in this chapter.

| Intelligent INPUTS |  |  |  | Intelligent INPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Code | Name | Page | Symbol | Code | Name | Page |
| RV | 01 | Reverse Run/Stop | 4-15 | TRQ2 | 42 | Torque limit select, bit 2 (MSB) | 4-30 |
| CF1 | 02 | Multi-speed select, Bit 0 (LSB) | 4-15 | PPI | 43 | P / PI mode selection | 4-26 |
| CF2 | 03 | Multi-speed select, Bit 1 | 4-15 | BOK | 44 | Brake confirmation signal | 4-32 |
| CF3 | 04 | Multi-speed select, Bit 2 | 4-15 | ORT | 45 | Orientation (home search) | 4-34 |
| CF4 | 05 | Multi-speed select, Bit 3 (LSB) | 4-15 | LAC | 46 | LAC: LAD cancel | 4-34 |
| JG | 06 | Jogging | 4-18 | PCLR | 47 | Position deviation reset | 4-34 |
| DB | 07 | External signal for DC injection braking | 4-19 | STAT | 48 | Pulse train position cmd enable | 4-34 |
|  |  |  |  | ADD | 50 | ADD frequency enable | 4-34 |
| SET | 08 | Set (select) second motor data | 4-19 | F-TM | 51 | Force terminal mode | 4-35 |
| 2CH | 09 | 2-stage accel and decel | 4-20 | ATR | 52 | Torque control enable | 4-35 |
| FRS | 11 | Free-run stop | 4-20 | KHC | 53 | Clear cumulative power value | 4-36 |
| EXT | 12 | External trip | 4-21 | SON | 54 | Speed servo ON | 4-37 |
| USP | 13 | Unattended start protection | 4-21 | FOC | 55 | Current forcing | 4-37 |
| CS | 14 | Commercial power source enable | 4-22 | MI1 | 56 | General-purpose input 1 | 4-38 |
| SFT | 15 | Software lock | 4-23 | MI2 | 57 | General-purpose input 2 | 4-38 |
| AT | 16 | Analog input voltage/current sel. | 4-24 | MI3 | 58 | General-purpose input 3 | 4-38 |
| SET3 | 17 | Set (select) 3rd motor data | 4-19 | MI4 | 59 | General-purpose input 4 | 4-38 |
| RS | 18 | Reset inverter | 4-24 | M15 | 60 | General-purpose input 5 | 4-38 |
| STA | 20 | Start (3-wire interface) | 4-25 | MI6 | 61 | General-purpose input 6 | 4-38 |
| STP | 21 | Stop (3-wire interface) | 4-25 | MI7 | 62 | General-purpose input 7 | 4-38 |
| F/R | 22 | FW, RV (3-wire interface) | 4-25 | MI8 | 63 | General-purpose input 8 | 4-38 |
| PID | 23 | PID Disable | 4-26 | AHD | 65 | Analog holding command | 4-38 |
| PIDC | 24 | PID Clear | 4-26 | CP1 | 66 | Multi-stage position select 1 | 4-39 |
| CAS | 26 | Control gain setting | 4-26 | CP2 | 67 | Multi-stage position select 2 | 4-39 |
| UP | 27 | Remote control Up func. | 4-28 | CP3 | 68 | Multi-stage position select 3 | 4-39 |
| DWN | 28 | Remote control Down func. | 4-28 | ORL | 69 | Zero-return limit function | 4-40 |
| UDC | 29 | Remote control data clearing | 4-28 | ORG | 70 | Zero-return trigger function | 4-40 |
| OPE | 31 | Operator control | 4-28 | FOT | 71 | Forward drive stop | 4-41 |
| SF1-7 | 32-38 | Multi-speed bits 1 to 7 | 4-15 | ROT | 72 | Reverse drive stop | 4-41 |
| OLR | 39 | Overload restriction | 4-29 | SPD | 73 | Speed/position control select | 4-41 |
| TL | 40 | Torque limit enable | 4-30 | PCNT | 74 | Pulse counter input | 4-42 |
| TRQ1 | 41 | Torque limit select, bit 1 (LSB) | 4-30 | PCC | 75 | Pulse counter clear | 4-42 |

Output Terminal Use the following table to locate pages for intelligent output material in this chapter. Listing

| Intelligent OUTPUTS |  |  |  | Intelligent OUTPUTS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Code | Name | Page | Symbol | Code | Name | Page |
| RUN | 00 | Run signal | 4-44 | FBV | 31 | PID feedback second stage output | 4-56 |
| FA1 | 01 | Freq. arrival type 1 constant speed | 4-44 | NDc | 32 | Network detection signal | 4-57 |
|  |  |  |  | LOG1 | 33 | Logic output 1 | 4-58 |
| FA2 | 02 | Freq. arrival type 2 -over-frequency | 4-44 | LOG2 | 34 | Logic output 2 | 4-58 |
|  |  |  |  | LOG3 | 35 | Logic output 3 | 4-58 |
| OL | 03 | Overload advance notice signal | 4-46 | LOG4 | 36 | Logic output 4 | 4-58 |
| OD | 04 | Output deviation for PID control | 4-46 | LOG5 | 37 | Logic output 5 | 4-58 |
| AL | 05 | Alarm signal | 4-47 | LOG6 | 38 | Logic output 6 | 4-58 |
| FA3 | 06 | Freq. arrival type 3 - at freq. | 4-44 | WAC | 39 | Capacitor life warning | 4-58 |
| OTQ | 07 | Over-torque signal | 4-48 | WAF | 40 | Low cooling fan speed | 4-59 |
| IP | 08 | Instantaneous power failure signal | 4-48 | FR | 41 | Starting contact signal | 4-59 |
| UV | 09 | Under-voltage signal | 4-48 | OHF | 42 | Heatsink overheat warning | 4-59 |
| TRQ | 10 | In torque limit signal | 4-51 | LOC | 43 | Low output current signal | 4-60 |
| RNT | 11 | Run time over | 4-51 | M01 | 44 | General output 1 | 4-60 |
| ONT | 12 | Power-ON time over | 4-51 | MO2 | 45 | General output 2 | 4-60 |
| THM | 13 | Thermal alarm signal | 4-52 | MO3 | 46 | General output 3 | 4-60 |
| BRK | 19 | Brake release signal | 4-54 | MO4 | 47 | General output 4 | 4-60 |
| BER | 20 | Brake error signal | 4-54 | MO5 | 48 | General output 5 | 4-60 |
| ZS | 21 | Zero speed detect | 4-54 | MO6 | 49 | General output 6 | 4-60 |
| DSE | 22 | Speed deviation maximum | 4-54 | IRDY | 50 | Inverter ready signal | 4-61 |
| POK | 23 | Positioning completion | 4-54 | FWR | 51 | Forward rotation signal | 4-61 |
| FA4 | 24 | Freq. arrival type 4 -over-frequency (2) | 4-44 | RVR | 52 | Reverse rotation signal | 4-61 |
|  |  |  |  | MJA | 53 | Major failure | 4-61 |
| FA5 | 25 | Freq. arrival type 5 at frequency (2) | 4-44 | WCO | 54 | [O] terminal window comparator | 4-62 |
|  |  |  |  | WCOI | 55 | [OI] terminal window comparator | 4-62 |
| OL2 | 26 | Overload advance notice signal (2) | 4-46 | WCO2 | 56 | [O2] terminal window comparator | 4-62 |
| Odc | 27 | Analog [O] disconnect detect | 4-55 |  |  |  |  |
| OIDc | 28 | Analog [OI] disconnect detect | 4-55 |  |  |  |  |
| O2Dc | 29 | Analog [O2] disconnect detect | 4-55 |  |  |  |  |

## Using Intelligent Input Terminals

Intelligent terminals [1], [2], [3], [4], [5], [6], [7], and [8] are identical, programmable inputs for general use. The input circuits can use the inverter's internal (isolated) +24 V field supply (P24) to power the inputs. The input circuits connect internally to [PLC] as a common point. To use the internal supply to power the inputs, use the jumper as shown. Remove the jumper to use an external supply, or to interface to a PLC system (or other) that has solid state outputs. If you use an external supply or PLC system, its power return must connect to the [PLC] terminal on the inverter to complete the input circuit.

## Input Wiring Examples

The following four input configurations are available to interface the inverter inputs to switches or the outputs of another system, such as a PLC.


Sinking inputs, external supply


Sourcing inputs, external supply

Wiring Diagram Conventions

The input wiring diagrams in this chapter are examples only. Default and non-default input terminal assignments are noted throughout; your particular assignments may be different. The wiring diagrams show the $-\mathrm{xFU} /-\mathrm{xFR}$ model default [P24]-[PLC] jumper position (U.S./Jpn versions), as shown below on the left. The common (return) for inputs is [CM1] in this case. The diagram on the right shows the default jumper position and example input wiring for -xFE models (Europe version). For this case, the common (return) for inputs is [P24]. Be sure the jumper position and return terminal used match your application wiring needs.
-xFU/-xFR models (U.S./Jpn versions):
FW RV
TH FW
P24 PLC CM1
F
-xFE models (Europe version):


Forward Run/ Stop and Reverse Run/Stop Commands

| Opt. Code | $[\mathrm{FW}]^{*}$ |
| :---: | :---: |
| and <br> Symbol | $01=[\mathrm{RV}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | $\mathrm{A} 002=01$ |
| Default <br> terminal | $[\mathrm{FW}]$ |
| * [FW] is a dedicated <br> terminal |  |



## Multi-Speed Select, Binary Encoded

| Opt. Code <br> and <br> Symbol | $02=[\mathrm{CF} 1]$ |
| :---: | :---: |
|  | $03=[\mathrm{CF} 2]$ |
|  | $04=[\mathrm{CF} 3]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | F001, A020 <br> to A035, <br> A019=00 |
| Default <br> terminals | $[7]=[\mathrm{CF} 1]$ <br> $[8]=[\mathrm{CF} 2] *$ |
| Other <br> terminals | Requires <br> config. |
| * default for -FE2 models <br> only |  |

WARNING: If the power is turned ON and the Run command is already active, the motor starts rotation and is dangerous! Before turning power ON, confirm that the external Run command is not active.

The inverter can store up to 16 different fixed target frequencies (speeds) in parameters A020 to A035. Binary inputs select the speed through four of the intelligent terminals configured as binary-encoded inputs CF1 to CF4 per the table. These can be any of the eight inputs, and in any order. You can use fewer inputs if you need eight or fewer speeds.

| Symbol | Function Name |
| :---: | :--- |
| CF1 | Binary speed select, Bit 0 (LSB) |
| CF2 | Binary speed select, Bit 1 |
| CF3 | Binary speed select, Bit 2 |
| CF4 | Binary speed select, Bit 3 (MSB) |


| Multi- <br> speed | Input Function |  |  |  |  | Multi- <br> speed | Input Function |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  | CF4 | CF3 | CF2 | CF1 | CF4 |  | CF2 | CF1 |  |  |
| Speed 0 | 0 | 0 | 0 | 0 | Speed 8 |  | 0 | 0 | 0 |  |
| Speed 1 | 0 | 0 | 0 | 1 | Speed 9 |  | 0 | 0 | 1 |  |
| Speed 2 | 0 | 0 | 1 | 0 | Speed 10 | 1 | 0 | 1 | 0 |  |
| Speed 3 | 0 | 0 | 1 | 1 | Speed 11 | 1 | 0 | 1 | 1 |  |
| Speed 4 | 0 | 1 | 0 | 0 | Speed 12 | 1 | 1 | 0 | 0 |  |
| Speed 5 | 0 | 1 | 0 | 1 | Speed 13 | 1 | 1 | 0 | 1 |  |
| Speed 6 | 0 | 1 | 1 | 0 | Speed 14 | 1 | 1 | 1 | 0 |  |
| Speed 7 | 0 | 1 | 1 | 1 | Speed 15 | 1 | 1 | 1 | 1 |  |

NOTE: When choosing a subset of speeds to use, always start at the top of the table, and with the least-significant bit: CF1, CF2, etc.

The example with eight speeds in the figure below shows how input switches configured for CF1 - CF3 functions can change the motor speed in real time.


Multi-speed Override Feature - The multi-speed function can selectively override the external analog speed reference input. When the Frequency Source Setting parameter A001 $=01$, the control terminal inputs determine the output frequency. At the same time, the inverter can use multi-speed select for output frequency if one or more intelligent inputs are configured as a CF type (CF1 to CF4). When all CF input(s) are OFF, the control terminal input determines the output frequency normally. When one or more CF input(s) are ON, then the corresponding multi-speed setting (see the table above) overrides and becomes the output frequency.
When programming the multi-speed settings, be sure to press the Store key each time and then set the next multi-speed setting. Note that when the Store key is not pressed, no data will be set.
When a multi-speed setting more than $50 \mathrm{~Hz}(60 \mathrm{~Hz})$ is to be set, it is necessary to program the maximum frequency A004 high enough to allow that speed.
While using the multi-speed capability, you can monitor the output frequency with monitor function D001 during each segment of a multi-speed operation.
There are two ways to program the speeds into the registers A020 to A035:

1. Standard keypad programming:
a. Select each parameter A020 to A035.
b. Press the key to view the parameter value.
c. Use the $\uparrow$ and $\gtrsim$ keys to edit the value.
d. Use the (STB) key to save the data to memory.
2. Programming using the CF switches:
a. Turn the Run command OFF (Stop Mode).
b. Turn inputs ON to select desired Multi-speed. Display the value of F001 on the digital operator.
c. Set the desired output frequency by pressing the $\triangle$ and $\sqrt{2}$ keys.
d. Press the (STR) key once to store the set frequency. When this occurs, F001 indicates the output frequency of the selected Multi-speed.
e. Press the eung. key once to confirm that the indication is the same as the set frequency.
f. Repeat operations in 2. a) to 2. e) to set the frequency of other Multi-speeds. It can be set also by parameters A020 to A035 in the first procedure 1. a) to 1. d).

## Multi-Speed <br> Select, Bit-level

| Opt. Code and Symbol | $32=[\mathrm{SF} 1]$ |
| :---: | :---: |
|  | $33=[\mathrm{SF} 2]$ |
|  | $34=[\mathrm{SF} 3]$ |
|  | $35=$ [SF4] |
|  | $35=$ [SF5] |
|  | $36=$ [SF6] |
|  | $37=$ [SF7] |
| Valid for Inputs | [1] to [8] |
| Required Settings | $\begin{gathered} \text { F001, A020 } \\ \text { to A035, } \\ \text { A019=01 } \end{gathered}$ |
| Default terminals | Requires config. |

The Bit-level method of speed control uses up to seven intelligent inputs to select from up to eight speeds. Since the all-switches-OFF combination selects the first speed, you only need $\mathrm{N}-1$ switches to select N speeds. With Bitlevel speed control, only one input is normally active at a time. If multiple switches are ON, the lower numbered input takes precedence (determines the speed). The table and figure below show how the input combinations work.

| Symbol | Function Name |
| :---: | :--- |
| SF1 | Bit-level Speed Select 1 |
| SF2 | Bit-level Speed Select 2 |
| SF3 | Bit-level Speed Select 3 |
| SF4 | Bit-level Speed Select 4 |
| SF5 | Bit-level Speed Select 5 |
| SF6 | Bit-level Speed Select 6 |
| SF7 | Bit-level Speed Select 7 |



| Multi- <br> speed | Input Function |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SF7 | SF6 | SF5 | SF4 | SF3 | SF2 | SF1 |
| Speed 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Speed 1 | - | - | - | - | - | - | 1 |
| Speed 2 | - | - | - | - | - | 1 | 0 |
| Speed 3 | - | - | - | - | 1 | 0 | 0 |
| Speed 4 | - | - | - | 1 | 0 | 0 | 0 |
| Speed 5 | - | - | 1 | 0 | 0 | 0 | 0 |
| Speed 6 | - | 1 | 0 | 0 | 0 | 0 | 0 |
| Speed 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

## Jogging Command

| Opt. Code | 06 |
| :---: | :---: |
| Symbol | $[\mathrm{JG}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required | $\mathrm{A} 002=01$, <br> Settings |
| A038 $\mathbf{~ B} 038$, <br> A039 0, <br> 05 |  |
| Default <br> terminal | $[3]$ |

The Jog input [JG] is used to command the motor to rotate slowly in small increments for manual operation. The speed is limited to 10 Hz . The frequency for the jogging operation is set by parameter A038. Jogging does not use an acceleration ramp. Therefore setting the jogging frequency A038 too high will cause inverter tripping.
A jog command may arrive while the motor is running. You can program the inverter to either ignore or respond to a jog command in this case by using function A039. The
 type of deceleration used to end a motor jog is also selectable by programming function A039. Six jog mode options are defined below:

| Jogging During Motor Operation |  | Jog Deceleration Method |
| :---: | :---: | :--- |
| Disabled, A039= | Enabled, A039= |  |
| 00 | 03 | Free-run stop (coasting) |
| 01 | 04 | Deceleration (normal level) and stop |
| 02 | 05 | Use DC braking and stop |

In the left example diagram below, the Jog command is ignored. In the right example diagram, a jog command interrupts a Run mode operation. However, if the Jog command turns ON before the [FW] or [RV] terminal turns ON, the inverter output turns OFF.


Note the following:

- Jogging is not performed when the value of A038 jogging frequency is smaller than the start frequency B082 or the value is 0 Hz .
- Be sure to turn ON [FW] or [RV] after the [JG] input turns ON for a jog operation.
- When setting A039 to 02 or 05 , you must also set the DC braking parameters.

External Signal for DC Injection Braking

| Opt. Code | 07 |
| :---: | :---: |
| Symbol | $[\mathrm{DB}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | A053, A054 |
| Default <br> terminal | Requires <br> config. |

When the terminal [DB] is turned ON , the DC braking [ DB ] feature is enabled (regardless of A051 setting). Set the following parameters when the external DC braking terminal is to be used:

- A053 - DC braking delay time setting. The range 0.0 to 5.0 seconds.
- A054 - DC braking force setting. The range is 0 to $100 \%$ for models -004 xxx to -1500 xxx ; 0 to $35 \%$ for models $-1850 x x x$ to $-4000 x x x$.

The scenarios to the right help show how DC braking works in various situations.

1. Scenario 1 - The [FW] Run or [RV] Run terminal is ON. When the [DB] terminal turns ON, DC braking is applied. When the [DB] terminal turns OFF again, the inverter output ramps to the previous frequency.
2. Scenario 2 - The Run command is applied from the operator keypad. When the [DB] terminal turns ON, DC braking is applied. When the [DB] terminal turns OFF again, the inverter output remains OFF.
3. Scenario 3 - The Run command is applied from the operator keypad. When the [DB] terminal turns ON, DC braking is applied after the delay time set by A053 expires. The motor is in a freerunning (coasting) condition during this delay time. When the [DB] terminal turns OFF again, the inverter output remains OFF.

Note the following:

- Do not use the [DB] input continuously or for a long time when the DC braking force setting A054 is high (depends on the motor application).
- Do not use the [DB] feature for continuous or high duty cycle as a holding brake. The [DB] input is designed to improve stopping performance. Use a mechanical brake for holding a stop position.


## Set Second or Third Motors

| Opt. Code | $08=[$ SET $]$ |
| :---: | :---: |
| and <br> Symbol | $17=[$ SET3] |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | (none) |
| Default <br> terminal | Requires <br> config. |

If you assign the [SET] or [SET3] functions to an intelligent input terminal, you can select between two or three sets of motor parameters. You may assign one or both of these functions. These second and third parameters store alternate sets of motor characteristics. When terminal [SET] or [SET3] is turned ON, the inverter will use the second or third set of parameters accordingly, generating the frequency output to the motor. When changing the state of the [SET] or [SET3] input terminal, the change will not take effect until the inverter is stopped.

When you turn ON the [SET] or [SET3] input, the inverter operates per the second or third set of parameters, respectively. When the terminal is turned OFF, the output function returns to the original settings (first set of motor parameters). Refer to "Configuring the Inverter for Multiple Motors" on page 4-76 for details.
Note the following:

- If the terminal state is changed while the inverter is running, the inverter continues using the current set of parameters until the inverter is stopped.
- If both SET and SET3 are ON at the same time, SET prevails and the 2nd motor parameters are in effect.



## Two-stage <br> Acceleration and Deceleration

| Opt. Code | 09 |
| :---: | :---: |
| Symbol | $[2 \mathrm{CH}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | A092, A093, <br> A094=0 |
| Default <br> terminal | $[5]$ |

When terminal [2CH] is turned ON, the inverter changes the rate of acceleration and deceleration from the initial settings (F002 and F003) to use the second set of acceleration/deceleration values (A092 and A093). When the terminal is turned OFF, the inverter returns to the original acceleration and deceleration time (F002 acceleration time 1 and F003 deceleration time 1). Use A092 (acceleration time 2) and A093 (deceleration time 2) to set the second stage acceleration and deceleration times.

In the graph shown above, the $[2 \mathrm{CH}]$ signal becomes active during acceleration. This causes the inverter to switch from using acceleration 1 (F002) to acceleration 2 (A092).

Note the following:

- Function A094 selects the method for second stage acceleration. It must be set $=00$ to select the input terminal method in order for the $[2 \mathrm{CH}]$ terminal assignment to operate.

Free-run Stop

| Opt. Code | 11 |
| :---: | :---: |
| Symbol | [FRS] |
| Valid for <br> Inputs | [1] to [8] |
| Required <br> Settings | B003, B088, <br> C011 to <br> C018 |
| Default <br> terminal | $[4]$ |

When the terminal [FRS] is turned ON, the inverter turns OFF the output and the motor enters the free-run state (coasting). If terminal [FRS] is turned OFF, the output resumes sending power to the motor if the Run command is still active. The free-run stop feature works with other parameters to provide flexibility in stopping and starting motor rotation.

In the diagram below, parameter B088 selects whether the inverter resumes operation from 0 Hz (left graph) or the current motor rotation speed (right graph) when the [FRS] terminal turns OFF. The application determines the best setting.

Parameter B003 specifies a delay time before resuming operation from a free-run stop. To disable this feature, use a zero delay time.



In the diagram above, [FRS] signal is active high. If you want the [FRS] terminal to be active low (normally closed logic), change the setting ( C 011 to C 018 ) that corresponds to the input [1] to [8] that is assigned the [FRS] function (C001 to C008).

External Trip

| Opt. Code | 12 |
| :---: | :---: |
| Symbol | $[\mathrm{EXT}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | (none) |
| Default <br> terminal | Requires <br> config. |

When the terminal [EXT] transitions OFF-to-ON, the inverter enters the trip state, indicates error code E12, and stops the output. This is a general purpose interrupt type feature, and the meaning of the error depends on what you connect to the [EXT] terminal. Even if [EXT] is turned OFF, the inverter remains in the trip state. You must reset the inverter or cycle power to clear the error, returning the inverter to the Stop Mode.

In the graph below, the [EXT] input turns ON during normal Run Mode operation. The inverter lets the motor free-run to a stop, and the alarm output turns ON immediately. When the operator initiates a Reset command, the alarm and error are cleared. When the Reset is turned OFF, the motor begins rotation since the Run command is already active.


If the USP (Unattended Start Protection) feature is in use, the inverter will not automatically restart after cancelling the EXT trip event. In that case, it must receive either another Run command (OFF-to-ON transition), a keypad Reset command, or an [RS] intelligent terminal input signal.

Unattended Start Protection

| Opt. Code | 13 |
| :---: | :---: |
| Symbol | [USP] |
| Valid for <br> Inputs | [1] to [8] |
| Required <br> Settings | (none) |
| Default <br> terminal | $[6]^{*}$ |

* Default for -FU2 models only; others require input configuration

If the Run command is already present when power is turned ON, the inverter starts running immediately after powerup. The Unattended Start Protection (USP) function prevents that automatic startup. If the [USP] input is active, the inverter will not run without outside intervention. In this case, there are two ways to reset an alarm and resume running:

1. Turn the Run command OFF, or
2. Perform a reset operation by the terminal [RS] input or the keypad Stop/reset key

The three examples below show how the USP function works in the scenarios described at the bottom of the diagram. The error code E13 indicates the USP trip state and corresponds to the Alarm signal in the diagram.

Example 1
Example 2
Example 3
Power
[FW]
[USP]

Note the following;

- Note that when a USP error occurs and it is canceled by a reset from the [RS] terminal input or keypad, the inverter restarts immediately.
- Even when the trip state is canceled by turning the terminal [RS] ON and OFF after an under- voltage trip E09 occurs, the USP function will be performed.
- When the Run command is active immediately after the power is turned ON, a USP error will occur. When this function is used, wait for at least three (3) seconds after powerup before applying a Run command.

Commercial Power Source Enable

| Opt. Code | 14 |
| :---: | :---: |
| Symbol | $[\mathrm{CS}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | B003, B007 |
| Default <br> terminal | Requires <br> config. |

The commercial power source switching function is useful in systems with excessive starting torque requirements. This feature permits the motor to be started "across the line," sometimes called a bypass configuration. After the motor is running, the inverter takes over to control the speed. This feature can eliminate the need to oversize the inverter, reducing cost. However, additional hardware such as magnetic contactors will be required to realize this function. For example, a system may require 55 KW to start, but only 15 KW to run at constant speed. Therefore, a 15 KW rated inverter would be sufficient when using the commercial power source switching.
The [CS] Commercial Power Source Enable input signal operation is as follows:

- OFF-to-ON transition signals the inverter that the motor is already running at powerup (via bypass), thus suppressing the inverter's motor output in Run Mode.
- ON-to-OFF transition signals the inverter to apply a time delay (B003), frequency match its output to existing motor speed, and resume normal Run Mode operation

The following block diagram shows an inverter system with bypass capability. When starting the motor directly across the line, relay contacts Mg 2 are closed, and Mg 1 and Mg 3 are open. This is the bypass configuration, since the inverter is isolated from the power source and motor. Then Mg 1 contacts close about 0.5 to 1 second after that, supplying power to the inverter.


Switching to inverter control occurs after the motor is running at full speed. First, Mg 2 relay contacts open. Then about 0.5 to 1 seconds later, relay Mg 3 contacts close, connecting the inverter to the motor. The following timing diagram shows the event sequence:


In the previous timing diagram, when the motor has been started across the line, Mg 2 is switched OFF and Mg3 is switched ON. With the Forward command to the inverter already ON , the [CS] terminal is switched ON and relay Mg 1 contacts close. The inverter will then read the motor RPM (frequency matching). When the [CS] terminal is switched OFF, the inverter applies the Retry wait time before motor restart parameter (B003).
Once the delay time has elapsed the inverter will then start and match the frequency (if greater than the threshold set by B007). If an over-current trip occurs during frequency matching, extend the retry wait time B003. If the ground fault interrupter breaker (GFI) trips on a ground fault, the bypass circuit will not operate the motor. When an inverter backup is required, take the supply from the bypass circuit GFI. Use control relays for [FW], [RV], and [CS].

## Software Lock

| Opt. Code | 15 |
| :---: | :---: |
| Symbol | $[\mathrm{SFT}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | B031 <br> (excluded <br> from lock) |
| Default <br> terminal | Requires <br> config. |

When the terminal [SFT] is ON, the data of all the parameters and functions (except the output frequency, depending on the setting of B031) is locked (prohibited from editing). The keypad and remote programming devices will be prevented from changing parameters. To edit parameters again, turn OFF the [SFT] terminal input. Use parameter B031 to select whether the output frequency is excluded from the lock state or is locked as well. Note the following:

- When the [SFT] terminal is turned ON, only the output frequency can be changed.
- Software lock can include the output frequency by setting B031.
- Software lock by the operator is also possible without the [SFT] terminal being used (B031).


## Analog Input Current/Voltage Select

| Opt. Code | 16 |
| :---: | :---: |
| Symbol | [AT] |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required | A001 $=01$ <br> Settings |
| A005 $=00 /$ <br> 01 <br> $01 / 02$ |  |
| Default <br> terminal | $[2]$ |

Reset Inverter

| Opt. Code | 18 |
| :---: | :---: |
| Symbol | $[\mathrm{RS}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | B003, B007, <br> $\mathrm{C} 102, \mathrm{C} 103$ |
| Default <br> terminal | $[1]$ |

The [AT] terminal operates in conjunction with parameter setting A005 to determine the analog input terminals that are enabled for current or voltage input. Setting A006 determines whether the signal will be bipolar, allowing for a reverse direction range. Note that current input signal cannot be bipolar and cannot reverse direction (must use [FW] and [RV] command with current input operation). The basic operation of the [AT] intelligent input is as follows:

- [AT] = ON and A005 = 00 - [AT] will enable terminals [OI]-[L] for current input, 4 to 20 mA
- $[\mathbf{A T}]=\mathbf{O N}$ and $\mathbf{A 0 0 5}=\mathbf{0 1}-[\mathrm{AT}]$ will enable terminals [O2]-[L] for voltage input
- $[\mathbf{A T}]=\mathbf{O F F}-$ Terminals [O]-[L] are enabled for voltage input (A005 may be equal to 00 or 01) in this case

Be sure to set the frequency source setting A001=01 to select the analog input terminals. Please refer to "Analog Input Operation" on page 4-63 for more information on bipolar input configuration, and the operating characteristics of analog inputs.

The [RS] terminal causes the inverter to turn OFF the motor output and execute a powerup reset. If the inverter is in Trip Mode, the reset cancels the Trip state. When the signal [RS] is turned ON and OFF, the inverter executes the reset operation. The minimum pulse width for [RS] must be 12 ms or greater. The alarm output
 will be cleared within 30 ms after the onset of the Reset command. Note the following:

- When the control terminal [RS] input is already ON at powerup for more than 4 seconds, the remote operator display is "R-ERROR COMM<2>" (the display of the digital operator is - - - -). However, the inverter has no error. To clear the digital operator error, turn OFF the terminal [RS] input and press one of the operator keys.
- The active edge (leading or trailing) of the [RS] signal is determined by the setting of C102.
- A terminal configured with the [RS] function can only be configured as a normally open contact. The terminal cannot be used in the normally closed contact state.
- When input power is turned ON, the inverter performs the same reset operation as it does when a pulse on the [RS] terminal occurs.


NOTE: For inverter models -1850 Hxx to -4000 Hxx : After an external reset input [RS] occurs, the internal cooling fan turn ON after stopping once.

WARNING: After the Reset command is given and the alarm reset occurs, the motor will restart suddenly if the Run command is already active. Be sure to set the alarm reset after verifying that the Run command is OFF to prevent injury to personnel.

## Thermistor <br> Thermal Protection

| Opt. Code | - |
| :---: | :---: |
| Symbol | $[\mathrm{TH}]$ |
| Valid for <br> Inputs | [TH only] |
| Required <br> Settings | B098, B099, <br> and C085 |
| Default <br> terminal | $[\mathrm{TH}]$ |

## Three-wire

 Interface Operation| Opt. Code <br> and <br> Symbol | $20=[\mathrm{STA}]$$\frac{21=[\mathrm{STP}]}{22=\mathrm{F} / \mathrm{R}}$ |
| :---: | :---: |
|  | $[1]$ to $[8]$ |
| Required <br> Settings | A002=01 |
| Default <br> terminal | Requires <br> config. |

Motors that are equipped with a thermistor can be protected from overheating. Input terminal [TH] is dedicated to sense thermistor resistance. The input can be set up (via B098 and B099) to accept a wide variety of NTC or PTC type thermistors. Use this function to protect the motor from overheating.
When a thermistor is connected between terminals [TH] and [CM1], the inverter checks for over-temperature and will cause a trip (E35) and turn OFF the output to the motor. Be sure the thermistor is connected to terminals $[\mathrm{TH}]$ and [CM1]. If the resistance is above or below (depending on whether NTC or PTC) the threshold the inverter will trip. When the motor cools down enough, the thermistor resistance will change enough to permit you to clear the error. Press the STOP/Reset key to clear the error.
An open circuit in the thermistor causes a trip, and the inverter turns OFF the motor output.

The 3-wire interface is an industry standard motor control interface. This function uses two inputs for momentary contact start/stop control, and a third for selecting forward or reverse direction.

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| STA | Start Motor | Start motor rotation on momentary contact (uses accel- <br> eration profile) |
| STP | Stop Motor | Stop motor rotation on momentary open (OFF is active <br> state), (uses deceleration profile) |
| F/R | Forward/Reverse | ON = Reverse; OFF = Forward |

To implement the 3-wire interface, assign 20 [STA] (Start), 21 [STP] (Stop), and 22 [F/R] (Forward/Reverse) to three of the intelligent input terminals. Use momentary contacts for Start and Stop. Use a selector switch, such as SPST for the Forward/Reverse input. Be sure to set the operation command selection $\mathrm{A} 002=01$ for input terminal control of motor. Note the following:

- If you have a motor control interface that needs logic-level control (rather than momentary pulse control), use the [FW] and [RV] inputs instead.
- The STP logic is inverted. Normally the switch will be closed, so you open the switch to stop. In this way, a broken wire causes the motor to stop automatically (safe design).
- When you configure the inverter for 3-wire interface control, the dedicated [FW] terminal is automatically disabled. The [RV] intelligent terminal assignment is also disabled.

The diagram below shows the use of 3-wire control. STA (Start Motor) is an edge-sensitive input; an OFF-to-ON transition gives the Start command. The control of direction is levelsensitive, and the direction may be changed at any time. STP (Stop Motor) is also a levelsensitive input.


PID Disable and PID Clear

| Opt. Code and Symbol | 23=[PID] |
| :---: | :---: |
|  | 24=[PIDC] |
| Valid for Inputs | [1] to [8] |
| Required Settings | A071 |
| Default terminal | Requires config. |

The PID loop function is useful for controlling motor speed to achieve constant flow, pressure, temperature, etc. in many process applications.

PID Disable - This function temporarily suspends PID loop execution via an intelligent input terminal. It overrides the parameter A071 (PID Enable) to stop PID execution and return to normal motor frequency output characteristics. the use of PID Disable on an intelligent input terminal is optional. Of course, any use of the PID loop control requires setting PID Enable function A071=01.
PID Clear - This function forces the PID loop integrator sum $=0$. So, when you turn ON an intelligent input configured as [PIDC], the integrator sum is reset to zero. This is useful when switching from manual control to PID loop control and the motor is stopped.
Note the following:

- The use of [PID] and [PIDC] terminals are optional. Use A071=01 if you want PID loop control enabled all the time.
- Do not enable/disable PID control while the motor is running (inverter is in Run Mode).
- Do not turn ON the [PIDC] input while the motor is running (inverter is in Run Mode).

CAUTION: Be careful not to turn PID Clear ON and reset the integrator sum when the inverter is in Run Mode (output to motor is ON). Otherwise, this could cause the motor to decelerate rapidly, resulting in a trip.

When sensorless vector control, 0 Hz sensorless vector control, or vector control with sensor is selected for the control method, the Control Gain Switching function selects between two sets of gains in the internal speed loop. These gains are used in proportional and integral compensation. When Control Gain Switching is not selected for an intelligent input terminal, the default gains in effect correspond to the OFF state of [CAS].

Use [PPI] P/PI Control Switching to select between proportional and proportional-integral control.

| Symbol | Function Name | Input <br> State | Description |
| :---: | :--- | :---: | :--- |
| CAS | Control Gain Switching | ON | Gains in parameters H070, H071, and H072 <br> are selected |
|  |  | OFF | Gains in parameters H050, H051, H052; or, <br> H250, H251, H252 (2nd motor) are selected |
| PPI | P / PI Control Switching | ON | Selects Proportional control (P) |
|  |  | OFF | Selects Proportional-Integral control (PI) |

The table below lists the functions and parameter settings related to internal speed loop gains.

| Function Code | Parameter | Setting Range | Description |
| :--- | :---: | :---: | :--- |
| A044 / A244 / <br> A344 | Control method <br> selection | 03 | SLV (does not use A344) |
|  |  | 04 | 0-Hz Domain SLV (does not <br> use A344) |
|  |  | 05 | V2 (does not use A244 or <br> A344) |
| C001 - C008 | Intelligent input <br> selection | 43 | PPI : P/I switching |
| H005 / H205 | Speed response | 0.001 to 65.53 | No dimension |


| Function Code | Parameter | Setting Range | Description |
| :--- | :--- | :---: | :--- |
| H050 / H250 | PI proportional gain | 0.0 to $999.9 / 1000$ | \% gain |
| H051 / H251 | PI integral gain | 0.0 to $999.9 / 1000$ | \% gain |
| H052 / H252 | P proportional gain | 0.01 to 10.00 | No dimension |
| H070 | PI proportional gain <br> for switching | 0.0 to $999.9 / 1000$ | \% gain |
| H071 | PI integral gain for <br> switching | 0.0 to 999.9/1000 | \% gain |
| H072 | P proportional gain <br> for switching | 0.0 to 10.0 | No dimension |
| H073 | Gain switching time | 0. to 999. | Millisceonds |

The speed control mode is normally proportionalintegral compensation (PI), which attempts to keep the deviation between the actual speed and speed command equal to zero. You can also select proportional (P) control function, which can be used for droop control (i.e. several inverters driving one load). Droop is the speed difference resulting from P control versus PI control at $100 \%$ output torque as shown in the graph. Set the $\mathrm{P} / \mathrm{PI}$ switching function (option 43) to one of the intelligent input terminals [1] to [8]. When the P/PI input terminal is ON, the control mode becomes proportional control $(\mathrm{P})$. When the $\mathrm{P} / \mathrm{PI}$ input terminal is OFF, the control mode becomes proportional-integral control.


The proportional gain Kpp value determines the droop. Set the desired value using parameter H052. The relationship between the Kpp value and the droop is shown below:

$$
\text { Droop }=\frac{10}{(\mathrm{Kpp} \mathrm{Set} \mathrm{Value})}(\%)
$$

The relationship between the droop and the rated rotation speed is shown below:

$$
\text { Droop }=\frac{\text { Speed error at rated torque }}{\text { Synchronous speed base frequency }}
$$

Remote Control Up and Down Functions

| Opt. Code <br> and <br> Symbol | $27=[\mathrm{UP}]$ $28=[\mathrm{DWN}]$ |
| :---: | :---: |
|  | $[1]$ to [8] |
| Required | A001 $=02 ;$ <br> Settings <br> (enables <br> Semory) |
| Default <br> terminal | Requires <br> config. |

The [UP] [DWN] terminal functions can adjust the output frequency for remote control while the motor is running. The acceleration time and deceleration time used with this function is the same as for normal operation ACC 1 and DEC 1 (2ACC1,2DEC1). The input terminals operate as follows:

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| UP | Remote Control UP Function | Accelerates (increases output frequency) motor <br> from current frequency |
| DWN | Remote Control DOWN <br> Function | Decelerates (decreases output frequency) motor <br> from current frequency |
| UDC | Remote Control Data Clear | Clears the Up/down frequency memory |

In the graph below, the [UP] and [DWN] terminals activate while the Run command remains ON. The output frequency responds to the [UP] and [DWN] commands.


It is possible for the inverter to retain the frequency set from the [UP] and [DWN] terminals through a power loss. Parameter C101 enables/disables the memory. If disabled, the inverter retains the last frequency before an UP/DWN adjustment. Use the [UDC] terminal to clear the memory and return to the original set output frequency.

## Force Operation from Digital Operator

| Opt. Code | 31 |
| :---: | :---: |
| Symbol | [OPE] |
| Valid for <br> Inputs | [1] to [8] |
| Required <br> Settings | A001, <br> A002 (set not <br> equal to 02) |
| Default <br> terminal | Requires <br> config. |

This function permits a digital operator interface to override the Run command source setting (A002) when it is configured for a source other than the operator interface. When the [OPE] terminal is ON, the operator interface Run command over-rides commands from input terminals (such as [FW], [RV]). The inverter will use the standard output frequency settings to operate the motor. When the [OPE] terminal is OFF, the Run command operates normally, as configured by A002.

When changing the [OPE] state during Run Mode (inverter is driving the motor), the inverter will stop the motor before the new [OPE] state takes effect. If the [OPE] input turns ON and the digital operator gives a Run command while the inverter is already running, the inverter stops the motor. Then the digital operator can control the motor.

Overload Restriction

| Opt. Code | 39 |
| :---: | :---: |
| Symbol | [OLR] |
| Valid for <br> Inputs | [1] to [8] |
| Required <br> Settings | B021-B023 <br> (Set 1), <br> B024- B026 <br> (Set 2) |
| Default <br> terminal | Requires <br> config. |

The inverter constantly monitors the motor current during acceleration, deceleration, and constant speed. If the inverter reaches the overload restriction level, it adjusts the output frequency automatically to limit the amount of overload. This function prevents an over-current trip by inertia during rapid acceleration or large changes in load at constant speed. It also attempts to prevent an over-voltage trip on deceleration due to regeneration. It accomplishes this by temporarily suspending deceleration and/or increasing the frequency in order to dissipate regenerative energy. Once the DC bus voltage falls sufficiently, deceleration will resume.
OLR Parameter Selection - Two sets of overload restriction parameter settings and values are available as outlined in the table below.

| Symbol | Function Name | Input <br> State | Description |
| :---: | :--- | :---: | :--- |
| OLR | Overload Restriction <br> Selection | ON | Selects Overload Restriction Set 2, <br> B024, B025, B026 settings in effect |
|  |  | OFF | Selects Overload Restriction Set 1, <br> B021, B022, B023 settings in effect |

Use the B021-B026 group of settings to configure the two set of parameters as needed. By assigning the Overload Restriction function [OLR] to an intelligent terminal, you can select the set of restriction parameters that is in effect.

| Function | Function Code |  | Data or Range | Description |
| :---: | :---: | :---: | :---: | :---: |
|  | Set 1 | Set 2 |  |  |
| Overload Restriction Operation Mode | B021 | B024 | 00 | Disable |
|  |  |  | 01 | Enabled during accel and constant speed |
|  |  |  | 02 | Enabled during constant speed |
|  |  |  | 03 | Enabled during accel, constant speed, and decel |
| Overload Restriction Setting | B022 | B025 | Rated current * 0.5 to rated current *2 | Current value at which the restriction begins |
| Deceleration Rate at Overload Restriction | B023 | B026 | 0.1 to 30 seconds | Deceleration time when overload restriction operates |

## Note the following:

- If the overload restriction constant (B023 or B026) is set too short, an over-voltage trip during deceleration will occur due to regenerative energy from the motor.
- When an overload restriction occurs during acceleration, the motor will take longer to reach the target frequency, or may not reach it. The inverter will make the following adjustments:
a) Increase the acceleration time
b) Raise torque boost
c) Raise overload restriction level

The figure below shows the operation during an overload restriction event. The overload restriction level is set by B022 and B025. The overload restriction constant is the time to decelerate to 0 Hz from maximum frequency. When this function operates, the acceleration time will be longer than the normal acceleration time.


NOTE: The Overload Advance Notice function for intelligent outputs is related to Overload Restriction operation, discussed in "Overload Advance Notice Signal" on page 4-46.

## Torque Limit

| Opt. Code <br> and <br> Symbol | $40=[\mathrm{TL}]$$\frac{41=[\mathrm{TRQ} 1]}{}$ |
| :---: | :---: |
|  | $[1]$ to [TRQ2] |
| Required |  |
| Settings | B040, B041, <br> B042, B043, <br> B044 |
| Default <br> terminal | Requires <br> config. |

The Torque Limit function limits the motor output torque for sensorless vector control, sensorless vector control 0 Hz domain, or vector control with feedback. Three intelligent inputs control the Torque Limit function:

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| TL | Torque limit enable | Enables torque limit function when ON |
| TRQ1 | Torque limit select 1, Bit 1 (LSB) | Binary encoded bit for quadrant select |
| TRQ2 | Torque limit select 2, Bit 2 (MSB) | Binary encoded bit for quadrant select |

In the torque limit function, the following operational modes are available (selected by B040):

1. Four-quadrant individual setting mode - This mode sets torque limit in 4 zones, forward driving and regenerating, reverse driving and regenerating. Limits for each quadrant are set with B041 - B044 individually.
2. Terminal selection mode - By use of torque limit select intelligent input terminals 1 and 2, this mode changes and uses torque limits $1-4$ set in B041B044. Selected torque limit range is valid in all four quadrants. Inputs TRQ1 and TRQ2 apply only to terminal selection mode.
3. Analog input mode - This mode sets torque limit value by the voltage applied to terminal [O2] (referenced to [L] for ground. An input of $0-10 \mathrm{~V}$ corresponds to the torque limit value of 0 to $200 \%$. The selected torque limit value is valid in all four quadrants (whether forward or reverse move, driving or regenerating).

| Intelligent <br> Inputs |  | Torque limit <br> parameter |
| :---: | :---: | :---: |
| TRQ2 | TRQ1 |  |
| OFF | OFF | B041 |
| OFF | ON | B042 |
| ON | OFF | B043 |
| ON | ON | B044 |

4. Expansion Cards 1 and 2 - This function is valid when using the expansion card (SJ-DG). Please refer to the SJ-DG instruction manual.

When the torque limit enable function [TL] is assigned to an intelligent input terminal, torque limiting occurs only when [TL] is ON. Both the 4-quadrant mode and terminal switching mode of torque limiting use input [TL] for enable/disable. When the [TL] input is OFF, the inverter always uses the default torque control limit of $200 \%$ maximum. That torque limit value corresponds to $200 \%$ of the maximum inverter output current. Therefore, the output torque also depends on the particular motor in use. When the over-torque output [OTQ] is assigned in the intelligent output selection, it turns ON when the inverter is performing torque limiting. When using the torque limit function at low speed, also use the overload restriction feature.

| Code | Function | Data or Range | Description |
| :---: | :--- | :---: | :--- |
|  |  | 00 | V/f Constant torque |
| A044 / | Control method | 01 | V/f Variable torque |
| A244 | selection | 02 | V/f Free-setting torque *1 |
|  |  | 03 | Sensorless vector *1 |
|  |  | 04 | Sensorless vector, 0 Hz domain *1 |
| Vector control with sensor *2 |  |  |  |
| B040 |  | 00 | 4-quadrant individual setting |
|  | Torque limit | 01 | Terminal selection |
|  | selection | 02 | Analog [O2] input |
|  |  | 03 | Expansion card 1 |
| B041 | Torque limit 1 | 0 to 200\% | Forward-driving in 4-quadrant mode |
| B042 | Torque limit 2 | 0 to 200\% | Reverse-regenerating in 4-quadrant |
|  |  |  | mode |
| B043 | Torque limit 3 | 0 to 200\% | Reverse-driving in 4-quadrant mode |
| B044 | Torque limit 4 | 0 to 200\% | Forward-regenerating in 4-quadrant |
|  |  |  | mode |
| C001 | Intelligent input | 40 | Torque limit enable |
| to | terminal [1] to [8] | 41 | Torque limit selection, bit 1 (LSB) |
| C008 | function | 42 | Torque limit selection, bit 2 (MSB) |
| C021 | Intelligent output | 10 | In torque limit |
| to | terminal [11] to [15] |  |  |
| C025 |  |  |  |

Note 1: Unavailable for A344
Note 2: Unavailable for A244 and A344

The 4-quadrant operation mode for torque limiting ( $B 040=00$ ) is illustrated in the figure to the right. The instantaneous torque depends on inverter activity (acceleration, constant speed, or deceleration), as well as the load. These factors determine the operating quadrant at any particular time. The parameters in B041, B042, B043 and B044 determine the amount of torque limiting that the inverter applies.
The terminal selection mode ( $\mathrm{B} 040=01$ ) uses two intelligent inputs [TRQ1] and [TRQ2] for the binary-encoded selection of one of the four torque limit parameters B041, B042, B043 and B044.


External Brake Control Function

| Opt. Code | 44 |
| :---: | :---: |
| Symbol | $[\mathrm{BOK}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | B120 $=01 ;$ <br> Set B121 to <br> B127 |
| Default <br> terminal | Requires <br> config. |

The External Brake Control function enables the inverter to control external electromechanical brake systems with a particular safety characteristic. For example, elevator control systems maintain the brake on the load until the drive motor has reached a releasing frequency (point at which the external mechanical brake is released). This ensures that the load does not have an opportunity to begin coasting before the inverter begins driving the motor. The External Brake Control function can be enabled by setting parameter B120 $=01$.

The diagram below shows the signals that are important to the External Brake Control function.


- Brake confirmation [BOK] turns ON to indicate that an external brake system has released (is not engaged). If external brake control is enabled ( $\mathrm{B} 120=01$ ), then the [BOK] signal must work properly to avoid an inverter trip event.
- If [BOK] is not assigned to an intelligent input, then setting B124 is ignored.

The steps below describe the timing diagram of events on the following page.

1. When the Run command turns ON, the inverter begins to operate and accelerate to releasing frequency (B125).
2. After the output frequency arrives at the set releasing frequency (B125), the inverter waits for the brake release confirmation, set by B121. The inverter outputs the braking release signal [BRK]. However, if the output current of the inverter is less than the releasing current set by B126, the inverter does not turn ON the brake release output [BRK]. The lack of the proper current level indicates a fault (such as open wire to motor). In this case, the inverter trips and outputs the braking error signal [BER]. This signal is useful to engage an emergency brake to ensure the load does not move, if the primary braking system has failed.
3. While the brake release output $[\mathrm{BRK}]$ is ON , the inverter drives the motor but does not accelerate immediately. The inverter waits for confirmation from the external brake. When the external brake system properly releases, it signals the inverter by using the Brake OK input terminal [BOK]. If [BOK] is not assigned to an intelligent input, B124 is ignored.
4. When the brake operates properly and signals with the [BOK] input, the inverter waits for the required time for acceleration (B122), and then begins to accelerate to the set target frequency. If [BOK] is not assigned to an intelligent input, acceleration begins after the delay time set by B122 after [BRK] signal occurs.
5. When the Run command turns OFF, the procedure outlined above happens in reverse. The idea is to engage the brake before the motor comes completely to a stop. The inverter decelerates to the releasing frequency (B125) and turns the brake release output [BRK] OFF to engage the brake.
6. The inverter does not decelerate further during just the waiting time for brake confirmation (B121). If the brake confirmation signal does not turn OFF within the waiting time for brake confirmation, the inverter causes a trip alarm and outputs the brake error signal [BER] (useful for engaging an emergency brake system).
7. Normally, the brake confirmation signal [BOK] turns OFF, and the inverter waits the required waiting time. Then the inverter begins to decelerate again and brings motor and load to a complete stop (see timing diagram on next page).

The following table lists the parameters related to the External Brake Control function.

| Code | Function | Data or Range | Description |
| :---: | :--- | :---: | :--- |
| B120 | Brake control <br> enable | $00=$ Disable <br> $01=$ Enable | Enables external brake control function within the <br> inverter |
| B121 | Brake waiting <br> time for release | 0.00 to 5.00 sec. | Sets the time delay after arrival at release <br> frequency (B125) before the inverter outputs brake <br> release signal [BRK] |
| B122 | Brake wait time <br> for acceleration | 0.00 to 5.00 sec. | Sets time delay after brake confirmation signal <br> [BOK] is received until the inverter begins to accel- <br> erate to the set frequency |
| B123 | Brake wait time <br> for stopping | 0.00 to 5.00 sec. | Sets the time delay after brake confirmation signal <br> [BOK] turns OFF (after [BRK] turns OFF) until <br> decelerating the inverter to 0 Hz |
| B124 | Brake wait time <br> for confirmation | 0.00 to 5.00 sec. | Sets the wait time for [BOK] signal after turn ON/ <br> OFF of [BRK] signal. If [BOK] is not received <br> during the specified time, the inverter will trip with <br> an external brake error [BER]. |
| B125 | Break release <br> frequency setting | 0.00 to $99.99 \mathrm{~Hz} /$ <br> 100.0 to 400.0 Hz | Sets the frequency at which the inverter outputs the <br> brake release signal [BRK] after delay set by B121 |
| B126 | Brake release <br> current setting | $0 \%$ to $200 \%$ of <br> rated current | Sets the minimum inverter current level above <br> which the brake release signal [BRK] will be <br> permitted |
| B127 | Braking <br> frequency | 0 to 400 Hzz <br> $(0$ to 120 Hz for <br> model -4000$)$ | Sets the frequency at which the inverter outputs the <br> braking signal |

The diagram below shows the event sequence described in the steps on the previous page.


## Expansion Card

 Input Signals| Opt. Code <br> and <br> Symbol | $45=[\mathrm{ORT}]$ |
| :---: | :---: |
|  | $46=[\mathrm{LAC}]$ |
|  | $47=[\mathrm{PCLR}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required |  |
| Settings | B120 $=01 ;$ <br> Set B121 to <br> B126 |
| Wiring <br> terminals | ‥on SJ-FB <br> Expansion <br> Card |

## ADD Frequency Enable

| Opt. Code | 50 |
| :---: | :---: |
| Symbol | [ADD] |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | A145, A146 |
| Default <br> terminal | Requires <br> config. |


| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| ORT | Orientation | Orientation (home search sequence) |
| LAC | LAD Cancel | Cancels the linear acceleration/deceleration position <br> control in the feedback card |
| PCLR | Position deviation clear | Forces the position error to zero |
| STAT | Pulse train input enable | Starts the pulse train control of motor frequency |

The diagram below shows how the Input/Output connections for the SJ-FB feedback board. The inverter's internal connections and parameter configuration make these signals available on intelligent input and output terminals.


The information on outputs related to the SJ-FB expansion card is in "Expansion Card Output Signals" on page 4-54.
Other inputs listed below require the expansion card SJ-FB Encoder Feedback. Please see the SJ-FB manual for more information

The inverter can add or subtract an offset value to the output frequency setting which is specified by A001 (will work with any of the five possible sources). The ADD Frequency is a value you can store in parameter A145. The ADD Frequency is summed with or subtracted from the output frequency setting only when the [ADD] terminal is ON. Function A146 selects whether to add or subtract. By configuring an intelligent input as the [ADD] terminal, your application can selectively apply the fixed value in A145 to offset (positively or negatively) the inverter output frequency in real time.


## Force Terminal Mode

| Opt. Code | 51 |
| :---: | :---: |
| Symbol | $[\mathrm{F}-\mathrm{TM}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | A001, A002 |
| Default <br> terminal | Requires <br> config. |

The purpose of this intelligent input is to allow a device to force the inverter to allow control of the following two parameters via the control terminals:

- A001 - Frequency source setting ( $01=$ control terminals [FW] and [RV])
- A002 - Run command source setting ( $01=$ control terminals [O] or [OI])

Some applications will require one or both settings above to use a source other than the terminals. You may prefer to normally use the inverter's keypad and potentiometer, or to use the ModBus network for control, for example. However, an external device can turn ON the [F-TM] input to force the inverter to (temporarily) allow control (frequency source and Run command) via control terminals. When the [F-TM] input is OFF, then the inverter uses the regular sources specified by A001 and A002 again.
When changing the [F-TM] state during Run Mode (inverter is driving the motor), the inverter will stop the motor before the new $[\mathrm{F}-\mathrm{TM}]$ state takes effect.

Torque Control Enable

| Opt. Code | 52 |
| :---: | :---: |
| Symbol | [ATR] |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required | A044 = 05, <br> P033, P034, <br> Settings |
| P035, P039, <br> P040, P036, <br> P037, P038 |  |
| Monitor <br> Settings | D009, D010, <br> D012 |
| Default <br> terminal | Requires <br> config. |

The torque control enable function is available in the vector control with encoder feedback mode (A044 $=05$ ). You can use the inverter not only in speed control or pulse train position control but also with the torque control function. Suitable applications include material winding machines.
The torque command input is enabled when the [ATR] intelligent input (assigned with option code 52 ) is ON. You can select one of four torque command input methods (digital operator and three analog input terminals) by the torque command input selection.

| Code | Function | Data or Range | Description |
| :---: | :---: | :---: | :---: |
| P033 | Torque command input selection | 00 | [O] terminal |
|  |  | 01 | [OI] terminal |
|  |  | 02 | [O2] terminal |
|  |  | 03 | Inverter keypad (P034) |
| P034 | Torque command setting | 0. to 200. (\%) | Torque setting for the input from the digital operator $(\mathrm{P} 033=03)$ |
| P035 | Torque command polarity select | 00 | Indicated by signal polarity at [O2] terminal |
|  |  | 01 | Depends on motor direction |
| P039 | Forward speed limit for torque-control mode | 0.00 to maximum frequency (Hz) | - |
| P040 | Reverse speed limit for torque-control mode | 0.00 to maximum frequency (Hz) | - |
| P036 | Torque bias mode | 00 | Disable |
|  |  | 01 | Inverter keypad (P037) |
|  |  | 02 | [O2] terminal input |
| P037 | Torque bias value | -200. to 200. (\%) |  |
| P038 | Torque bias polarity | 00 | Indicated by polarity |
|  |  | 01 | Depends on motor direction |

The following block diagram shows the torque control operation. If the measured speed exceeds the speed limit, the motor speed is controlled in proportional control mode.


Clear Cumulative When D015 cumulative power monitoring function is selected, the inverter displays the Power Value cumulative value of electric power input to the inverter. You can also convert the value to other engineering units by setting the related parameter gain (B079 cumulative input power display gain setting). The gain can be set within the range of 1 to 1000 (resolution $=1$ ).
There are two ways to clear the cumulative power data:

- Set B078 = 01 and press the STR key on the digital operator.
- Configure an intelligent input for the $[\mathrm{KHC}]$ function (option code $=53$ ). Turn ON the input to clear the cumulative power data.

When B079 cumulative input power display gain setting $=1000$, cumulative power data up to $999000 \mathrm{~kW} / \mathrm{h}$ can be displayed.

Speed Servo ON

| Opt. Code | 54 |
| :---: | :---: |
| Symbol | $[\mathrm{SON}]$ |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | A044 |
| Default <br> terminal | Requires <br> config. |

The servo-ON function allows you to set the inverter in a speed-servo-lock state with an intelligent input during operation. This function is available when A044=05 vector control with sensor for the characteristic V/f curve.
To use the servo-ON function, assign option code 54 to an intelligent input. After making the input assignment, the inverter will accept an operation command only when the [SON] terminal is ON .
If the [SON] terminal is turned OFF during inverter operation, the inverter output enters FRS mode (free-run stop). If the [SON] is turned ON again, the inverter restarts the motor according to function B088, Restart Mode After FRS.

The inverter does not allow [SON] terminal assignment and [FOC] (forcing function) assignment at the same time. If both are assigned, the [FOC] has priority (operates normally) and the [SON] function is not available.


Current Forcing

| Opt. Code | 55 |
| :---: | :---: |
| Symbol | $[\mathrm{FOC}]$ |
| Valid for <br> Inputs | [1] to [8] |
| Required <br> Settings | A044, A244 |
| Default <br> terminal | Requires <br> config. |

The current forcing function applies an excitation current to pre-build magnetic flux in the motor. The forcing function is available when one of the following vector control modes is configured for use at the inverter output:

- A044 = 03 sensorless vector control
- A044 = 040 Hz -range sensorless vector control
- $\mathrm{A} 044=05$ vector control with sensor

To use current forcing, assign option code 55 to an intelligent input terminal. After making the input assignment, the inverter will accept an operation command only when the [FOC] terminal is ON .
If the [FOC] terminal is turned OFF during inverter operation, the inverter output enters FRS mode (free-run stop). If the [FOC] is turned ON again, the inverter restarts the motor according to function B088, Restart Mode After FRS.

Excitation current flows


General Purpose Inputs 1-8

| Opt. Code and Symbol | 56=[MI1] |
| :---: | :---: |
|  | 57=[MI2] |
|  | 58=[MI3] |
|  | 59=[MI4] |
|  | 60=[MI5] |
|  | 61=[MI6] |
|  | 62=[MI7] |
|  | 63=[MI8] |
| Valid for Inputs | [1] to [8] |
| Required Settings | See Easy Sequence |
| Default terminal | Requires config. |

Refer to the Easy Sequence Instruction Manual for information on how to configure and use the general purpose inputs MI1 to MI8.

## Analog Holding Command

| Opt. Code | 65 |
| :---: | :---: |
| Symbol | [AHD] |
| Valid for <br> Inputs | $[1]$ to [8] |
| Required <br> Settings | C101 |
| Default <br> terminal | Requires <br> config. |

The analog holding function causes the inverter to sample and hold the analog command (external analog input). The hold operation begins when the intelligent input [AHD] (assign option code 65) turns ON. While [AHD] terminal is ON, the Up/Down function uses the held input level as the reference speed (frequency) value. Set parameter C101 (Up/Down memory Mode Selection) $=01$ to store the last frequency adjusted by UP/DWN in memory.
If the inverter power is cycled (OFF and ON) or the [RS] reset terminal receives a reset (ON and OFF) while [AHD] is ON (holding analog value), the data held at the moment of power OFF or Reset ON will be used.

The wave form below shows a typical sequence for use of the Analog Holding Command.


NOTE: Frequent use of the Analog Hold function may damage the corresponding flash memory register in the inverter.

## Multi-stage Position Select 1,2 , and 3

| Opt. Code <br> and <br> Symbol | $66=[\mathrm{CP} 1]$ |
| :---: | :---: |
|  | $[1]$ to [8] |
| $68=[\mathrm{CP} 3]$ |  |
| Required <br> Settings | P060 to <br> P067, C169 |
| Default <br> terminal | Requires <br> config. |

Three Multi-stage Position Select inputs are binary-encoded to select one of eight settings, P060 to P067. Input [CP1] is the LSB; [CP3] is the MSB. If no position select inputs are assigned, P060 becomes the default position setting.

| Function <br> Code | Multi-Position | Input Function |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | [CF3] | [CF2] | [CF1] |
| P060 |  | 0 | 0 | 0 |
| P061 | Position setting 1 | 0 | 0 | 1 |
| P062 | Position setting 2 | 0 | 1 | 0 |
| P063 | Position setting 3 | 0 | 1 | 1 |
| P064 | Position setting 4 | 1 | 0 | 0 |
| P065 | Position setting 5 | 1 | 0 | 1 |
| P066 | Position setting 6 | 1 | 1 | 0 |
| P067 | Position setting 7 | 1 | 1 | 1 |

The three multi-stage position select inputs [CF1, [CF2], and [CF3] are binary-encoded. When more than one input changes state to select a position, it is possible that skewing of input transitions would briefly select undesired intermediate positions. To avoid this problem, a determination time feature is available. Parameter C169 sets a delay time that applies uniformly to all three inputs. It operates according to the following process:

- The determination timer is initialized upon an input transition. The transition is not yet transferred to the output.
- The timer is initialized again if an input transitions before the timer expires.
- When the timer expires, the state of all three position select inputs is transferred to the output (to generate a new position selection, P060 to P067).


Note that excessively long determination time settings will reduce the overall performance of the position select inputs.

## Zero-Return Functions

| Opt. Code and Symbol | 69=[ORL] |
| :---: | :---: |
|  | 70=[ORG] |
| Valid for Inputs | [1] to [8] |
| Required Settings | $\begin{aligned} & \text { P068, P069, } \\ & \text { P070, P071 } \end{aligned}$ |
| Default terminal | Requires config. |

A zero-return operation (also called a home-return) occurs when the motor moves the load to a particular starting position. Using parameter P068, you may select one of three possible types of zero-return operations. Parameter P069 selects the search direction. The zero pulse input (also called zone input) signals the arrival at the zero position.

| Code | Function | Data | Description |
| :---: | :---: | :---: | :--- |
| P068 | Zero-return mode selection | 00 | Low speed |
|  |  | 01 | High speed 1 |
|  |  | 02 | High speed 2 |
| P069 | Zero return direction selection | 00 | Forward |
|  |  | 01 | Reverse |

It is generally a requirement (or good practice) to perform a zero-return operation after every powerup of the inverter. It is possible that the previous power OFF occurred when the load was not at zero position. Or, it may be that an external force moved the load during the power OFF period. If you do not perform a zero-return operation after power ON, then the inverter uses the current position at powerup as the zero position.


The three available zero-return modes differ in the overall search speed, final approach direction to the origin, and the limit switch input transition (or encoder pulse, if used) causing the final stop. Choose the zero-return mode that best fits your application.
Low-speed Zero Return:

1. Motor accelerates for the specified acceleration time to the low zeroreturn speed
2. Motor runs at the low zero-return speed
3. Inverter stops motor and sets position value to zero when [ORL] signal turns ON

High-speed 1 Zero Return:

1. Motor accelerates for specified acceleration time to high zero-return speed
2. Motor runs at high zero-return speed
3. Motor starts deceleration when [ORL] signal turns ON
4. Motor runs in reverse direction at low-speed zero-return speed
5. Inverter stops motor and sets position value to zero when [ORL] signal turns OFF

Output


High-speed 2 Zero Return:

1. Motor accelerates for specified acceleration time to high zeroreturn speed
2. Motor runs at high zero-return speed
3. Motor starts deceleration when [ORL] signal turns ON
4. Motor runs in reverse direction at low-speed zero-return speed
5. Motor starts deceleration to stop when [ORL] signal turns OFF

6. Motor accelerates in forward direction to low-speed zero return level
7. Inverter stops motor and sets position value to zero when next [Z] signal pulse occurs

Forward/Reverse Drive Stop

| Opt. Code and Symbol | 71=[FOT] |
| :---: | :---: |
|  | 72=[ROT] |
| Valid for Inputs | [1] to [8] |
| Required Settings | none |
| Default terminal | Requires config. |

The forward/reverse drive stop function prevents the motor from moving a load outside a desired position range. The end of travel in each direction must cause the appropriate input signal, [FOT] or [ROT], to turn ON. Typically a limit switch or proximity switch is used to generate these signals.
If the [FOT] turns ON during forward rotation (or [ROT] turns ON during reverse rotation), the inverter limits the motor torque to $10 \%$ in the current direction of travel.


Turn ON the [SPD] terminal input to perform speed control while in absolute position control mode. The direction of rotation depends on the operation command (FWD or REV). When switching from speed control to position control, be sure to verify the sign of the value set in the operation command.
While the [SPD] terminal is OFF, the current position count remains at zero. If the [SPD] terminal is turned OFF during motor operation, the control mode switches to position control and pulse counting begins, starting from zero. If the target position value is also zero, the inverter stops the motor at the current position. Otherwise, rotation continues until motor rotation arrives at the target position.


## Pulse Counter Signals

$\begin{array}{|c|c|}\hline \text { Opt. Code } & 74=[\mathrm{PCNT}] \\$\cline { 2 - 2 } and <br> Symbol\end{array} $\mathrm{75=[PCC]} \mathrm{|c|c\mid} \begin{array}{c}\text { Valid for } \\ \text { Inputs }\end{array} ~[1]$ to [8] $]$ D028

The intelligent pulse counter input [PCNT] allows you to input a pulse train up to 100 Hz via an intelligent input terminal. (For high-speed applications, use the encoder input expansion card instead.) Monitor the cumulative count with D028, pulse counter function. The value of the cumulative count cannot be stored in a separate register or parameter. The counter value is cleared to zero when inverter power is turn ON or the inverter is reset. You may also use the [ PCC ] Pulse Counter Clear input to clear the cumulative count.

The frequency resolution of the input pulse can be calculated by the formula shown below (assuming a pulse signal input with $50 \%$ duty cycle). Do not input higher frequencies than the calculated value.

Frequency resolution $(\mathrm{Hz})=250 /$ input terminal response setting (C160 to C168) +1 )
Example: When the input terminal response time $=1$, the frequency resolution $=125 \mathrm{~Hz}$


## Using Intelligent Output Terminals

The intelligent output terminals are programmable in a similar way to the intelligent input terminals. The inverter has several output functions that you can assign individually to five physical logic outputs. Along with these solid-state outputs, the alarm relay output has type Form C (normally open and normally closed) contacts. The relay is assigned the alarm function by default, but you can assign it to any of the functions that the open-collector outputs can use.

Sinking outputs (open collector)


TIP: The open-collector transistor outputs can handle up to 50 mA each. We highly recommend that you use an external power source as shown. It must be capable of providing at least 250 mA to drive the outputs at full load.

If you need output current greater than 50 mA , use the inverter output to drive a small relay. Be sure to use a diode across the coil of the relay as shown (reversebiased) in order to suppress the turn-off spike, or use a solid-state relay.


Run Signal

| Opt. Code | 00 |
| :---: | :---: |
| Symbol | $[\mathrm{RUN}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | (none) |
| Default <br> terminal | $[12]$ |

When the [RUN] signal is selected as an intelligent output terminal, the inverter outputs a signal on that terminal when it is in Run Mode. The output logic is active low, and is the open collector type (switch to common).

The timing diagram to the right shows the Run Signal operation in detail. The inverter outputs the [RUN] signal whenever the inverter output exceeds the start frequency specified by parameter B082. The start frequency is the initial inverter output frequency when it turns ON.

NOTE: If you use an intelligent output to drive an external relay, be sure to connect a diode across the relay coil. This will prevent the negative-going turn-off spike generated by the coil from damaging the inverter's output transistor.

Frequency Arrival The Frequency Arrival group of outputs help coordinate external systems with the current Signals velocity profile of the inverter. As the name implies, output [FA1] turns ON when the output frequency arrives at the standard set frequency (parameter F001). Outputs [FA2] through [FA5] provide variations on this function for increased flexibility, relying on two programmable accel/ decel thresholds. For example, you can have an output turn ON at one frequency during acceleration, and have it turn OFF at a different frequency during deceleration. All transitions have hysteresis to avoid output chatter if the output frequency is near one of the thresholds.

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| FA1 | Frequency arrival type 1- <br> constant speed | ON when output to motor is at the standard set <br> frequency F001 |
| FA2 | Frequency arrival type 2 - <br> over-frequency | ON when output to motor is at or above the FA <br> threshold 1 (C042) during accel |
| FA3 | Frequency arrival type 3- <br> at frequency | ON when output to motor is at the FA threshold 1 <br> (C042) during accel, or at C043 during decel |
| FA4 | Frequency arrival type 4 - <br> over-frequency (2) | ON when output to motor is at or above the FA <br> threshold 2 (C045) during accel |
| FA5 | Frequency arrival type 5 - <br> at frequency (2) | ON when output to motor is at the FA threshold 2 <br> (C045) during accel, or at C046 during decel |

Note the following:

- For most applications you will need to use only one or two of the frequency arrival type outputs (see example). However, it is possible to assign all five output terminals to output functions [FA1] through [FA5].
- For each frequency arrival threshold, the output anticipates the threshold (turns ON early) by an amount equal to $1 \%$ of the maximum frequency set for the inverter.
- The output turns OFF as the output frequency moves away from the threshold, delayed by an amount equal to $2 \%$ of the max. frequency.
 turn ON slightly early as the speed approaches the threshold. Then the turnOFF point is slightly delayed. The $1 \%$ and $2 \%$ values also apply to the remaining Frequency arrival outputs, discussed below.

Frequency Arrival outputs [FA2] and [FA4] work the same way; they just use two separate threshold pairs as shown in the figure. These provide for separate acceleration and deceleration thresholds to provide more flexibility than for [FA1]. [FA2] uses C042 and C045 for ON and OFF thresholds, respectively. [FA4] uses C043 and C046 for ON and OFF thresholds, respectively. Having different accel and decel thresholds provides an asymmetrical output function. However, you can use equal ON and OFF thresholds, if desired.


Frequency Arrival outputs [FA3] and [FA5] use the same threshold parameters as [FA2] and [FA4] above, but operate in a slightly different way. Refer to the diagram below. After the frequency arrives at the first threshold during acceleration and turns ON [FA3] or [FA5], they turn OFF again as the output frequency accelerates further. The second thresholds work similarly during deceleration. In this way, we have separate ON/OFF pulses for acceleration and deceleration.


## Overload Advance Notice Signal

$\begin{array}{|c|c|}\hline \text { Opt. Code } & 03=[\mathrm{OL}] \\$\cline { 2 - 2 } and <br> Symbol\end{array} 26=[OL2] $\left.\quad \begin{array}{|c|}\hline \text { Valid for } \\ \text { Outputs }\end{array} \begin{array}{c}{[11 \text { to [15], }} \\ \text { [ALx] }\end{array}\right]$

Output Deviation for PID Control

| Opt. Code | 04 |
| :---: | :---: |
| Symbol | $[\mathrm{OD}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | C044 |
| Default <br> terminal | Requires <br> config. |

When the output current exceeds a preset value, the [OL] or [OL2] terminal signal turns ON. Parameter C041 sets the overload threshold for
[OL]; parameter C111 sets it for [OL2]. The overload detection circuit operates during powered motor operation and during regenerative braking. The output circuits use open-collector transistors, and are active low.

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| OL | Overload advance notice signal (1) | ON when output current is more than the set <br> threshold for the overload signal (C041) |
| OL2 | Overload advance notice signal (2) | ON when output current is more than the set <br> threshold for the overload signal (C111) |

Note the following:

- The default threshold value is $100 \%$. To change the level from the default, set C041 or C111(overload level).
- The accuracy of this function is the same as the function of the output current monitor on the [FM] terminal (see "Analog Output Operation" on page 4-66).

NOTE: If you use an intelligent output to drive an external relay, be sure to connect a diode across the relay coil. This will prevent the negative-going turn-off spike generated by the coil from damaging the inverter's output transistor.



———_

The PID loop error is defined as the magnitude (absolute value) of the difference between the Setpoint (target value) and the Process Variable (actual value). When the error magnitude exceeds the preset value for C044, the [OD] terminal signal turns ON. The default deviation value is set to $3 \%$. To change this value, change parameter C044 (deviation level). Refer to "PID Loop Operation" on page 4-75.


NOTE: If you use an intelligent output to drive an external relay, be sure to connect a diode across the relay coil. This will prevent the negative-going turn-off spike generated by the coil from damaging the inverter's output transistor.

Alarm Signal

| Opt. Code | 05 |
| :---: | :---: |
| Symbol | [AL] |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | C026, C036 |
| Default <br> terminals | Relay [AL0], <br> [AL1], [AL2] |

The inverter Alarm Signal is active when a fault has occurred and it is in the Trip Mode (refer to the diagram at right). When the fault is cleared the Alarm Signal becomes inactive.
We must make a distinction between the Alarm Signal AL and the alarm relay contacts [AL0], [AL1] and [AL2]. The signal AL is a logic function, which you can assign to the open collector output terminals [11] to [15], or the relay outputs. The most common (and default) use of
 the relay is for AL, thus the labeling of its terminals. Use an open collector output (terminals [11] to [15]) for a low-current logic signal interface or to energize a small relay ( 50 mA maximum). Use the relay output to interface to higher voltage and current devices ( 10 mA minimum). Note the following:

- When the alarm output is set to normally closed, a time delay of less than 2 seconds occurs until the contact is closed when the power is turned ON.
- Terminals [11] - [15] are open collector outputs, so the electrical specifications of [AL] are different from the contact output terminals [AL0], [AL1], [AL2].
- When the inverter power supply is turned OFF, the alarm signal output is valid as long as the external control circuit has power.
- This signal output has the delay time ( 300 ms nominal) from the fault alarm output.
- The relay contact specifications are in "Specifications of Control and Logic Connections" on page 4-9. The contact diagrams for different conditions are on the next page.

The alarm output terminals operate as shown below (left) by default. The contact logic can be inverted as shown (below right) by using the parameter setting C036. The relay contacts normally open (N.O.) and normally closed (N.O.) convention uses "normal" to mean the inverter has power and is in Run or Stop Mode. The relay contacts switch to the opposite position when it is in Trip Mode or when input power is OFF.

| Contact position after initialization |  |  |  |  | Contact position inverted by C036 setting |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| During normal running |  | When an alarm occurs or power is turned OFF |  |  | During normal running or power is turned OFF |  |  | When an alarm occurs |  |
| Contact | Power | Run <br> State | $\begin{gathered} \text { AL0- } \\ \text { AL1 } \end{gathered}$ | $\begin{gathered} \text { AL0- } \\ \text { AL2 } \end{gathered}$ | Contact | Power | Run State | $\begin{gathered} \text { AL0- } \\ \text { AL1 } \end{gathered}$ | $\begin{gathered} \text { AL0- } \\ \text { AL2 } \end{gathered}$ |
| N.C. (after initialize, C036=01) | ON | Normal | Closed | Open | N.O.(setC036=00) | ON | Normal | Open | Closed |
|  | ON | Trip | Open | Closed |  | ON | Trip | Closed | Open |
|  | OFF | - | Open | Closed |  | OFF | - | Open | Closed |

## Over-torque Signal

| Opt. Code | 07 |
| :---: | :---: |
| Symbol | [OTQ] |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required |  |
| Settings | C055, C056, <br> C057, C058 |
|  | A044 = 03 or <br> 04 or 05 |
| Default <br> terminals | $[14]$ |

The Over-torque function [OTQ] turns ON when the estimated value of output torque of motor increases more than the arbitrary level set for the output (see table below). Recall that the torque limit function, covered in "Torque Limit" on page 4-30, actually limits the torque during certain operating conditions. Instead, the over-torque output feature only monitors the torque, turning ON output [OTQ] if the torque is above programmable thresholds you set. The [OTQ] function is valid only for sensorless vector control, $0-\mathrm{Hz}$ domain sensorless vector control, or vector control with sensor. Do not use the [OTQ] output except for these inverter operational modes.

| Code | Function/Description | Data or Range |
| :---: | :--- | :---: |
| C055 | Over-torque, forward-driving level setting | 0 to $200 \%$ |
| C056 | Over-torque, reverse-regenerating, level setting | 0 to $200 \%$ |
| C057 | Over-torque, reverse-driving, level setting | 0 to $200 \%$ |
| C058 | Over-torque, forward-regenerating, level setting | 0 to $200 \%$ |
| C021 to C025 | Intelligent output terminal [11] to [15] function | 07 |

The assignment of the Over-torque function to an output terminal [OTQ] is detailed in the table at the left.

## Instantaneous

 Power Failure / Under-voltage Signal| Opt. Code | $08=[\mathrm{IP}]$ |
| :---: | :---: |
| and <br> Symbol | $09=[\mathrm{UV}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> $[\mathrm{ALx}]$ |
| Required <br> Settings | B001, B002, <br> B003, B004, <br> B005, B007 |
| Default <br> terminals | Requires <br> config. |

An instantaneous power failure (complete loss) or under-voltage condition (partial loss) of inverter input voltage can occur without warning. SJ7002 Series inverters can be configured to respond to these conditions in different ways. You can select whether the inverter trips or retries (restart attempt) when an instantaneous power failure or under-voltage condition occurs. You can select the retry function with parameter B001.

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| IP | Instantaneous Power Failure | ON when the inverter detects a loss of input <br> power |
| UV | Under-voltage condition | ON when the inverter input power is less <br> than the specified input range |

When enabled, the Retry Function operates in the following ways:
Under-voltage conditions - When an instantaneous power failure or under-voltage condition occurs, the inverter will attempt to restart up to 16 times. A trip condition will occur on the 17 th attempt, which must be cleared with the Stop/Reset key. When connecting control power supply terminals [Ro]-[To] to the DC bus [P]-[N], an under-voltage may be detected at poweroff and cause a trip. If this is undesirable, set B004 to 00 or 02 .

Over-current/voltage conditions - When retry function is selected and an over-current or an over-voltage condition occurs, a restart is attempted 3 times. A trip will occur on the 4th failed restart attempt. Use parameter B004 to select the trip and alarm response to instantaneous power failure and under-voltage conditions.
If an over-voltage or over-current trip occurs during the deceleration and an instantaneous power failure error (E16) is displayed the inverter goes into free-run stop. In this case make the deceleration time longer.

Use the parameters listed in the table below to define Instantaneous Power Failure and Under-voltage Signal operation.

| Code | Function | Data or Range | Description |
| :---: | :--- | :---: | :--- |
| B001 | Selection of <br> automatic restart <br> mode | 00 | Alarm output after trip, automatic <br> restart disabled |
|  |  | 01 | Restart at 0 Hz |
|  |  | 02 | Retry with frequency matching to <br> present motor speed |
|  |  | 03 | Retry with frequency matching <br> followed by deceleration to stop- then <br> trip alarm |
| B002 | Allowable under- <br> voltage power <br> failure time | 0.3 to 1.0 sec. | The amount of time a power input <br> under-voltage can occur without <br> tripping the power failure alarm. If <br> under-voltage exists longer than this <br> time, the inverter trips, even if the restart <br> mode is selected. If it exists less than <br> this time retry will be attempted. |
| B003 | Retry wait time <br> before motor <br> restart | 0.3 to 100 sec. | Time delay after a trip condition goes <br> away before the inverter restarts the <br> motor |
| B004 | Instantaneous <br> power failure / <br> voltage trip alarm <br> enable | 00 | Disable |
|  |  | 01 | Enable |
| B005 | Number of restarts <br> on power failure / <br> under-voltage trip <br> events | 02 | Disable during stop and ramp to stop |

In the following examples, $\mathrm{t}_{0}=$ instantaneous power failure time, $\mathrm{t}_{1}=$ allowable under-voltage $/$ power failure time (B002), and $t_{2}=$ retry wait time ( B 003 ).

Example 1: Power failure within allowed limits; resume


After waiting for $t_{2}$ seconds when $t_{0}<t_{1}$; restart

Example 2: Power failure longer than limits; trip


Examples 3 and 4 relate to configuring the inverter to retry upon power failure. Frequency matching is possible if the inverter frequency is greater than the B007 value. In this case, the inverter reads the motor RPM and direction. If this speed is higher than the matching setting (B007), the inverter waits until they are equal and then engages the output to drive the motor (example 3). If the actual motor speed is less than the restart frequency setting, the inverter waits for $t_{2}$ (value in B003) and restarts from 0 Hz (example 4). The display shows " 0000 " during an actual frequency matching event.

Example 3: Motor resumes via frequency-matching


Motor frequency $>\mathrm{B} 007$ value at $\mathrm{t}_{2}$

Example 4: Motor restarts from 0 Hz


Motor frequency < B007 value at $\mathrm{t}_{2}$

The Instantaneous Power Failure and Alarm output responses during various power loss conditions are shown in the diagram below. Use B004 to enable/disable the alarm output when instantaneous power failure or under-voltage occurs. The alarm output will continue while the control power of the inverter is present, even if the motor is stopped. Examples 5 to 7 correspond to normal wiring of the inverter's control circuit. Examples 8 to 10 correspond to the wiring of the inverter's control circuit for controlled deceleration after power loss (see "Optional Controlled Decel and Alarm at Power Loss" on page 4-4).

Instantaneous power failure operation with standard R0-TO connections

Instantaneous power failure operation with R0-TO connected to P-N


## Torque Limit Signal

| Opt. Code | 10 |
| :---: | :---: |
| Symbol | [TRQ] |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required | B040... if <br> B040 <br> Settings |
|  | B04, set <br> B04, B042, B044 |
| Default <br> terminals | Requires <br> config. |

Run Time /
Power-On Time
Over Signals

| Opt. Code | $11=[\mathrm{RNT}]$ |
| :---: | :---: |
| and <br> Symbol | $12=[\mathrm{ONT}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> $[\mathrm{ALx}]$ |
| Required <br> Settings | B034 |
| Default <br> terminals | Requires <br> config. |

The Torque Limit output [TRQ] works in conjunction with the torque limit function covered in the intelligent input section. The torque limit function limits the motor torque according to the criteria selected by parameter B040. When torque limiting occurs, the [TRQ] output turns ON, then turns OFF automatically when the output torque falls below the specified limits. Note that the Torque Limit input [TL] must be ON in order to enable torque limiting and its related output, [TRQ]. See "Torque Limit" on page 4-30 in the intelligent input section.

SJ7002 Series inverters accumulate the total hours in Run Mode (run time) and the total hours of power-ON time. You can set thresholds for these accumulating timers. Once the threshold is exceeded, an output terminal will turn ON. One use of this is for preventative maintenance. A signal light or audible alert could signal the need for servicing, calibration, etc.

| Symbol | Function Name | Description |
| :---: | :--- | :--- |
| RNT | Run Time Over | ON when the accumulated time spent in <br> Run Mode exceeds the limit (B034) |
| ONT | Power-ON Time Over | ON when the accumulated power-ON time <br> exceeds the limit (B034) |

The two outputs [RNT] and [ONT] share the same time threshold parameter, B034. Typically, you will use either the [RNT] or the [ONT] output only - not both at once. These outputs are useful for the notification that a preventative maintenance interval has expired.

Thermal Warning Signal

| Opt. Code | 10 |
| :---: | :---: |
| Symbol | $[\mathrm{THM}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | C061 |
| Default <br> terminals | Requires <br> config. |

The purpose of the electronic thermal setting is to protect the motor from overloading, overheating and being damaged. The setting is based on the rated motor current. The inverter calculates the thermal rise (heating) of the motor using the current output to the motor squared, integrated over the time spent at those levels. This feature allows the motor to draw excessive current for relatively short periods of time, allowing time for cooling.

The Thermal Warning output [THM] turns ON to provide a warning before the inverter trips for electronic thermal protection. You can set a unique thermal protection level for each of the three motor profiles, as shown in the table below.

| Function <br> Code | Function/Description | Data or Range |  |
| :---: | :--- | :---: | :--- |
| B012/B212 <br> / B312 | Electronic thermal setting (calculated <br> within the inverter from current output) | Range is 0.2 * rated current to <br> $1.2 *$ rated current |  |
| B013 / B213 <br> /B313 | Electronic thermal characteristic (use <br> the setting that matches your load) | 00 | Reduced torque |
|  |  | 01 | Constant torque |
|  |  | 02 | Free-setting |

- The electronic thermal overload function uses the output current and time to calculate thermal heating of the motor. Use parameter C061 to set the threshold from 0 to $100 \%$ of trip level for turning ON the intelligent output [THM] at that level.
- The thermistor input of the inverter is a separate function from the electronic thermal function. It has its own threshold to cause a trip alarm at a particular thermistor resistance.

For example, suppose you have inverter model SJ700-110LFE2. The rated motor current is 46A. The setting range is $(0.2 * 46)$ to $(1.2 * 46)$, or 9.2 A to 55.2 A . For a setting of B012=46A (current at $100 \%$ ), the figure to the right shows the curve.

The electronic thermal characteristic adjusts the way the inverter calculates thermal heating, based on the type of torque control the inverter uses.


CAUTION: When the motor runs at lower speeds, the cooling effect of the motor's internal fan decreases.

Reduced Torque Characteristic - The example below shows the effect of the reduced torque characteristic curve (for example motor and current rating). At 20 Hz , the output current is reduced by a factor of 0.8 for given trip times.



Constant Torque Characteristic - Selecting the constant torque characteristic for the example motor gives the curves below. At 2.5 Hz , the output current is reduced by a factor of 0.9 for given trip times.


Free Thermal Characteristic - It is possible to set the electronic thermal characteristic using a free-form curve defined by three data points, according to the table below.

| Function <br> Code | Name | Description | Range |
| :---: | :--- | :--- | :---: |
| B015 / <br> B017 / <br> B019 | Free-setting electronic <br> thermal frequency 1, 2, 3 | Data point coordinates for Hz axis <br> (horizontal) in the free-form curve | 0 to 400 Hz |
| B016 / <br> B018 / <br> B020 | Free setting electronic <br> thermal current 1, 2, 3 | Data point coordinates for Ampere <br> axis (vertical) in the free-form curve | $0.0=$ (disable) <br> 0.1 to 1000. |

The left graph below shows the region for possible free-setting curves. The right graph below shows an example curve defined by three data points specified by B015-B020.


Suppose the electronic thermal setting (B012) is set to 44 Amperes. The graph below shows the effect of the free setting torque characteristic curve. For example, at (B017) Hz, the output current level to cause overheating in a fixed time period is reduced to (B018) A. Points (x), (y), and $(\mathrm{z})$ show the adjusted trip current levels in those conditions for given trip times.

$(x)=$ B018 value $\times 116 \%$
$(y)=$ B018 value $\times 120 \%$
$(z)=B 018$ value $\times 150 \%$

Reduced trip current at (B017) Hz

## Brake Control Signals

| Opt. Code <br> and <br> Symbol | $19=[\mathrm{BRK}]$ <br>  <br> Valid for <br> Outputs <br> [11 to [15], <br> [ALx] |
| :---: | :---: |
| Required <br> Settings | B120, B121, <br> B122, B123, <br> B124, B125, <br> B126 |
| Default <br> terminals | Requires <br> config. |

The Brake Control function enables the inverter to control external braking systems with a particular safety characteristic. The brake release logic convention is such that an open circuit fault (such as loose wire) causes the external brake to engage. A complete discussion of the operation of brake control is in "External Brake Control Function" on page 4-32. The diagram below shows the signals that are important to the External Brake Control function.


| Symbol | Function Name | Input <br> State | Description |
| :---: | :--- | :---: | :--- |
| BRK | Brake Release | ON | when the inverter signals the external brake <br> system to release (open) its brake |
|  |  | OFF | when the inverter is not driving the motor, and <br> needs the external brake engaged |
| BER | Brake Error | ON | when the output current is less than the set <br> releasing current |
|  |  | OFF | when the brake function is not in use, or when <br> the output current to the motor is correct and <br> it is safe to release the brake |

## Expansion Card Output Signals

| Opt. Code <br> and <br> Symbol | $21=[\mathrm{ZS}]$ |
| :---: | :---: |
|  | $[11$ to tDS$]$ <br> $[\mathrm{ALx}]$ |
| Required <br> Settings | C 061 |
| Default <br> terminals | Requires <br> config. |

Other outputs listed below require expansion card SJ-FB Encoder Feedback board. Please see the SJ-FB manual for more information.

| Opt. <br> Code | Symbol | Function Name | Description |
| :---: | :---: | :--- | :--- |
| 21 | ZS | Zero Speed Detect signal | Signal indicates the encoder pulses of the <br> motor have stopped |
| 22 | DSE | Speed Deviation Excessive | Velocity error exceeds the error threshold <br> defined by parameter P026 |
| 23 | POK | Positioning Completion | Indicates the load position is at the target |

Analog Disconnect Detection

| Opt. Code <br> and <br> Symbol | $27=[$ Odc] 28=[OIdc] |
| :---: | :---: |
|  | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | B070, B071, <br> B072 |
| Default <br> terminal | Requires <br> config. |

The analog disconnect detection is useful when the inverter receives a speed reference from an external device. Upon input signal loss at either the [O], [OI], or [O2] terminal, the inverter normally just decelerates the motor to a stop. However, the inverter can use the intelligent output terminals [ODc], [OIdc], or [O2dc] to signal other machinery that a signal loss has occurred.

Each analog disconnect output has independent thresholds, set by B070, B071, and B072.
When the input is below the set threshold value, the inverter substitutes the threshold value for the input. Related parameters are given in the following tables.

| Opt. <br> Code | Symbol | Function Name |
| :---: | :---: | :--- |
| 27 | Odc | Analog [O] disconnect detect |
| 28 | OIdc | Analog [OI] disconnect detect |
| 29 | O2dc | Analog [O2] disconnect detect |


| Code | Function | Data or Range | Description |
| :---: | :--- | :---: | :--- |
| B070 | [O] input disconnect <br> threshold | 0 to $100 \%$ | If [O] value < B070, turn ON [Odc]; <br> substitute B070 value for [O] input |
|  |  | no (255) | Ignore B070 setting |
| B071 | [OI] input disconnect <br> threshold | 0 to 100\% | If [OI] value < B071, turn ON [Odc]; <br> substitute B071 value for [OI] input |
|  |  | no (255) | Ignore B071 setting |
| B072 | [O2] input disconnect <br> threshold | 0 to 100\% | If [O2] value < B072, turn ON [Odc]; <br> substitute B072 value for [O2] input |
|  |  | no (255) | Ignore B072 setting |



The inverter can also detect when an analog input value is within a range (or window) of values. See "Window Comparator Signals" on page 4-62.

## PID Feedback <br> Second Stage Output

| Opt. Code | 31 |
| :---: | :---: |
| Symbol | $[\mathrm{FBV}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | C052, C053 |
| Monitor <br> Settings | D004 |
| Default <br> terminals | Requires <br> config. |

The inverter has a built-in PID loop feature for two-stage control, useful for certain applications such as building ventilation or heating and cooling (HVAC). In an ideal control environment, a single PID loop controller (stage) would be adequate. However, in certain conditions, the maximum output energy from the first stage is not enough to maintain the Process Variable (PV) at or near the Setpoint (SP). And, the output of the first stage is in saturation. A simple solution is to add a second stage, which puts an additional and constant amount of energy into the system under control. When sized properly, the boost from the second stage brings the PV toward the desired range, allowing the first stage PID control to return to its linear range of operation.

The two-stage method of control has some advantages for particular applications.

- The second stage is only ON in adverse conditions, so there is an energy savings during normal conditions.
- Since the second stage is simple ON/OFF control, it is less expensive to add than just duplicating the first stage.
- At powerup, the boost provided by the second stage helps the process variable reach the desired setpoint sooner than it would if the first stage acted alone.
- Even though the second stage is simple ON/OFF control, when it is an inverter you can still adjust the output frequency to vary the boost it provides.

Refer to the example diagram below. Its two stages of control are defined as follows:

- Stage 1 - Inverter \#1 operating in PID loop mode, with motor driving a fan
- Stage 2 - Inverter \#2 operating as an ON/OFF controller, with motor driving a fan

Stage \#1 provides the ventilation needs in a building most of the time. On some days, there is a change in the building's air volume because large warehouse doors are open. In that situation, Stage \#1 alone cannot maintain the desired air flow (PV sags under SP). Inverter \#1 senses the low PV and its PID Second Stage Output at [FBV] terminal turns ON. This gives a Run FWD command to Inverter \#2 to provide the additional air flow.


NOTE: The [FBV] is designed for implementing two-stage control. The PV high limit and PV low limit parameters, C052 and C053, do not function as process alarm thresholds. Terminal [FBV] does not provide a PID alarm function.

To use the PID Second Stage Output feature, you will need to choose upper and lower limits for the PV, via C053 and C052 respectively. As the timing diagram below shows, these are the thresholds Stage \#1 inverter uses to turn ON or OFF Stage \#2 inverter via the [FBV] output. The vertical axis units are percent (\%) for the PID setpoint, and for the upper and lower limits. The output frequency, in Hz , is superimposed onto the same diagram.

When system control begins, the following events occur (in sequence in the timing diagram):

1. Stage \#1 inverter turns ON via the [FW] Run command.
2. Stage \#1 inverter turns ON the [FBV] output, because the PV is below the PV low limit C053. So, Stage \#2 is assisting in loop error correction from the beginning.
3. The PV rises and eventually exceeds the PV high limit C052. Stage \#1 inverter then turns OFF the [FBV] output to Stage \#2, since the boost is no longer needed.
4. When the PV begins decreasing, only Stage \#1 is operating, and it is in the linear control range. This region is where a properly configured system will operate most often.
5. The PV continues to decrease until it crosses under the PV low limit (apparent external process disturbance). Stage \#1 inverter turns ON the [FBV] output, and Stage \#2 inverter is assisting again.
6. After the PV rises above the PV low limit, the [FW] Run command to Stage \#1 inverter turns OFF (as in a system shutdown).
7. Stage \#1 inverter enters Stop Mode and automatically turns OFF the [FBV] output, which causes Stage \#2 inverter to also stop.


Network
Detection Signal

| Opt. Code | 32 |
| :---: | :---: |
| Symbol | $[\mathrm{Ndc}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | C076, C077 |
| Default <br> terminals | Requires <br> config. |

The intelligent output [Ndc] Network Detection Signal indicates the status of ModBus-RTU communications (not ASCII protocol). The [Ndc] terminal turns ON when the external device on the ModBus stops transmitting for a time that exceeds parameter C077, Communication Time-out Before Trip. If a time-out occurs, the output [Ndc] remains ON until ModBus-RTU communication resumes. Use parameter C076 Action Upon Communication Error Selection to select the desired inverter response to a time-out event.


## Logic Output Signals

| Opt. Code and Symbol | 33=[LOG1] |
| :---: | :---: |
|  | 34=[LOG2] |
|  | 35=[LOG3] |
|  | 36=[LOG4] |
|  | 37=[LOG5] |
|  | 38=[LOG6] |
| Valid for Outputs | $\begin{gathered} {[11 \text { to }[15],} \\ {[\mathrm{ALx}]} \end{gathered}$ |
| Required Settings | $\begin{gathered} \text { C142 to } \\ \text { C159 } \end{gathered}$ |
| Default terminal | Requires config. |

Capacitor Life Warning

| Opt. Code | 39 |
| :---: | :---: |
| Symbol | [WAC] |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Monitor <br> Settings | D022 |
| Default <br> terminals | Requires <br> config. |

The example below shows a configuration for [LOG1] Logic Output 1. Parameters C142 and C143 contain option codes for two outputs we select to be used as inputs to the logic operation. Parameter C144 contains the select code for the logic operation. $00=\mathrm{AND}, 01=\mathrm{OR}$, and $02=O R$.


| Input States |  | [LOGx] Output State |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A Input | B Input | AND (00) | OR (01 | XOR (02) |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |

The Logic Output Function uses the inverter's built-in logic feature. You can select any two of the other intelligent output options for use as internal inputs to the logic function. You may also select from three logical operators AND, OR, or XOR (exclusive OR), to be applied to the two inputs. A total of six outputs are available, shown in the following tables.

| Symbol | Option <br> Code | Function | A Input | B Input | Logical Operator |
| :---: | :---: | :--- | :---: | :---: | :---: |
| LOG1 | 33 | Logic Output 1 | C142 | C143 | C144 |
| LOG2 | 34 | Logic Output 2 | C145 | C146 | C147 |
| LOG3 | 35 | Logic Output 3 | C148 | C149 | C150 |
| LOG4 | 36 | Logic Output 4 | C151 | C152 | C153 |
| LOG5 | 37 | Logic Output 5 | C154 | C155 | C156 |
| LOG6 | 38 | Logic Output 6 | C157 | C158 | C159 |

The inverter calculates the capacitor life remaining based on the internal temperature of the inverter and the cumulative power-ON time. The [WAC] Capacitor Life Warning output turns ON to indicate that the capacitors have reached end-of-life. If this event occurs, Hitachi recommends that you replace the main circuit board and logic circuit board. You may also use monitor parameter D022 at the digital operator to monitor the status of capacitor life.

Low Cooling Fan Speed

| Opt. Code | 40 |
| :---: | :---: |
| Symbol | [WAF] |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | B092 |
| Monitor <br> Settings | D022 |
| Default <br> terminals | Requires <br> config. |

## Starting Contact

 Signal| Opt. Code | 41 |
| :---: | :---: |
| Symbol | $[\mathrm{FR}]$ |
| Valid for <br> Outputs | $[11$ to $[15]$, <br> [ALx] |
| Required <br> Settings | none |
| Default <br> terminals | Requires <br> config. |

The inverter monitors the heat sink cooling fan speed to help prevent overheating. If the speed of the fan(s) decreases to $75 \%$ or less of full speed, output [WAF] Low Cooling Fan Speed turns ON. Note that if you set parameter B092 Cooling Fan Control $=01$ (Fan ON only during RUN), the inverter will not output the [WAF] signal when the cooling fan is stopped.
If the [WAF] signal turns ON during operation, first check the cooling fan inlet for clogging by dust and debris. If the air circulation path is clear, the fans may need replacement. You may also use monitor parameter D022 at the digital operator to monitor the status of fan speed.

The inverter generates [FR] Starting Contact Signal to correspond with Run (FW or RV) input commands. The source of the Run command does not matter (so the A002 setting is ignored). If both FW and RV inputs are ON, the inverter stops motor operation and turns OFF the [FR] output. The [FR] signal is useful for external devices that need a traditional starting contact signal to coordinate operation with the inverter.


Heatsink
Overheat
Warning

| Opt. Code | 42 |
| :---: | :---: |
| Symbol | $[\mathrm{OHF}]$ |
| Valid for <br> Outputs | $[11$ to $[15]$, <br> $[\mathrm{ALx}]$ |
| Required <br> Settings | C064 |
| Default <br> terminals | Requires <br> config. |

The inverter monitors its heatsink temperature to detect overheating. You can use parameter C064, Heatsink Overheat Warning Level, to set the over-temperature threshold for the heatsink in degrees C. The inverter will turn ON intelligent output [OHF] Heatsink Overheat Warning if the heatsink temperature exceeds the value in parameter C064.

## Low Output <br> Current Signal

| Opt. Code | 43 |
| :---: | :---: |
| Symbol | $[\mathrm{LOC}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> $[\mathrm{ALx}]$ |
| Required <br> Settings | C038, C039 |
| Default <br> terminals | Requires <br> config. |

The inverter monitors the output current to the motor according to parameter C038, Low Current Indication Output Mode Select. Use parameter C039, Low Current Indication Detection Level, to set the low-current threshold. The Low Output Current Signal [LOC] will turn ON if the output current is less than the C038 threshold and motor operation corresponds to the selected monitoring mode.

| Code | Function | Data or Range | Description |
| :---: | :--- | :---: | :--- |
| C038 | Low current indication <br> output mode select | 00 | Output during acceleration/deceleration <br> and constant speed operation |
|  | 01 | Output only during constant speed *1 |  |
| C039 | Low current indication <br> detection level | 0.0 to 2.0 x <br> rated inverter <br> current | Low current threshold, used for <br> intelligent output [LOC] |

Note 1: Note that when parameter A001 Frequency Source Setting = 01 (control terminal), it is possible that the inverter may not recognize a constant speed due to sampling, In this case, change $\mathrm{C} 038=00$ to include accel./decel., or increase the analog input filter A016 setting.


## General Output

 Signals| Opt. Code and Symbol | 44=[MO1] |
| :---: | :---: |
|  | 45=[MO2] |
|  | 46=[MO3] |
|  | 47=[MO4] |
|  | 48=[MO5] |
|  | 49=[MO6] |
| Valid for Outputs | $\begin{gathered} {[11 \text { to }[15],} \\ {[\mathrm{ALx}]} \end{gathered}$ |
| Required Settings | See Easy Sequence |
| Default terminal | Requires config. |

Refer to the Easy Sequence Instruction Manual for information on how to configure and use the general purpose outputs MO1 to MO6.

Inverter Ready Signal

| Opt. Code | 50 |
| :---: | :---: |
| Symbol | $[$ IRDY] |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | none |
| Default <br> terminals | Requires <br> config. |

The inverter turns ON the Inverter Ready Signal [IRDY] output when it is ready to receive an operation command such as Run Forward, Run Reverse, or Jog. Otherwise, [IRDY] will be OFF and the inverter cannot accept operation commands. If [IRDY] is OFF, then check the input power supply voltage at the $[\mathrm{R}],[\mathrm{S}]$, and $[\mathrm{T}]$ terminals to be sure the voltage is within the input specification range. The [IRDY] output is OFF when the input power is provided only to the control power supply,

Forward/Reverse Rotation Signals

| Opt. Code | $51=[\mathrm{FWR}]$ |
| :---: | :---: |
| Symb <br> Symol | $52=[\mathrm{RVR}]$ |
| Valid for <br> Ouputs | $[11$ to $[15]$, <br> $[\mathrm{ALx}]$ |
| Required <br> Settings | none |
| Default <br> terminal | Requires <br> config. |

The Forward Rotation Signal [FWR] is ON only when the inverter is driving the motor in the foward direction. Similarly, the Reverse Rotation Signal [RVR] is ON only when the inverter is driving the motor in the reverse direction. Both signals are OFF when the motor is stopped.


## Major Failure Signal

| Opt. Code | 53 |
| :---: | :---: |
| Symbol | $[\mathrm{MJA}]$ |
| Valid for <br> Outputs | $[11$ to [15], <br> [ALx] |
| Required <br> Settings | none |
| Default <br> terminals | Requires <br> config. |

The Major Failure Signal [MJA] indicates that a particular type of error event has occurred, resulting in an inverter trip. In addition to causing the normal trip alarm, the following error events also will turn ON the [MJA] output, when assigned to an intelligent output terminal.

| Error <br> Code | Name |
| :--- | :--- |
| E 10 | CT (current transformer) error |
| E 1 1 | CPU error |
| E 14 | Ground fault |
| E20 | Inverter thermal trip with low fan speed |
| E23 | Gate array error |
| E25 | Main circuit error |

## Window <br> Comparator <br> Signals

| Opt. Code and Symbol | 54=[WCO] |
| :---: | :---: |
|  | 55=[WCOI] |
|  | 56=[WCO2] |
| Valid for Ouputs | $\begin{gathered} {[11 \text { to }[15],} \\ {[\mathrm{ALx}]} \end{gathered}$ |
| Required Settings | none |
| Default terminal | Requires config. |

The window comparator function outputs turn ON when You can also monitor each analog input by comparing it to a threshold value. This feature allows the inverter to detect disconnected signal wiring, loss of power at a signal transmitter, etc. When the input is below the set threshold value, the inverter substitutes the threshold value for the input. The related parameters are given in the following tables.

| Opt. <br> Code | Symbol | Function Name |
| :---: | :---: | :--- |
| 54 | WCO | $[\mathrm{O}]$ terminal window comparator |
| 55 | WCOI | $[\mathrm{OI}]$ terminal window comparator |
| 54 | WCO2 | $[\mathrm{O} 2]$ terminal window comparator |


| Code | Function | Range | Description |
| :---: | :---: | :---: | :---: |
| B060 | [O] input maximum limit level of window comparator | 0. to 100. (\%) | Lower limit = B061 + B062 x 2 |
| B061 | [ O ] input minimum limit level of window comparator | 0. to 100. (\%) | Lower limit = B060-B062 x 2 |
| B062 | [O] input hysteresis width of window comparator | 0. to 10. (\%) | Lower limit = B061-B062 x 2 |
| B063 | [OI] input maximum limit level of window comparator | 0. to 100. (\%) | Lower limit $=$ B064 + B066 x 2 |
| B064 | [OI] input minimum limit level of window comparator | 0. to 100. (\%) | Lower limit = B063-B066 x 2 |
| B065 | [OI] input hysteresis width of window comparator | 0. to 10. (\%) | Lower limit = B063-B064 x 2 |
| B066 | [O2] input maximum limit level of window comparator | -100. to 100. (\%) | Lower limit $=$ B067 + B068 $\times 2$ |
| B067 | [O2] input minimum limit level of window comparator | -100. to 100. (\%) | Lower limit = B066-B068 x 2 |
| B068 | [O2] input hysteresis width of window comparator | 0. to 10. (\%) | Lower limit = B066-B067 x 2 |

The following signal diagram shows the window comparator output generated from input signals and comparator settings listed along the Y axis.


## Analog Input Operation

Input Terminal Signals

SJ7002 inverters provide for an external analog input to command the inverter frequency output value. The analog input terminal group includes the $[\mathrm{L}],[\mathrm{OI}],[\mathrm{O}],[\mathrm{O} 2]$, and $[\mathrm{H}]$ terminals on the control connector, which provide for Voltage [O] and [O2] or Current [OI] input. All analog input signals must use the analog ground [L].
If you use either the voltage or current analog input, you must select one of them using the logic input terminal function [AT] analog type. If terminal [AT] is OFF, the voltage input [O] can command the inverter output frequency. If terminal
 [AT] is ON, the current input [OI] can command the inverter output frequency. The [AT] terminal function is covered in "Analog Input Current/ Voltage Select" on page 4-24. Remember that you must also set A001 $=01$ to select analog input as the frequency source.


## Input Filter

Parameter A016 adjusts an analog input sampling filter that evenly affects all analog inputs shown above. The parameter range is from 1 to 30 . Before increasing the filter setting, we recommend trying to find the cause of input analog noise. Check for the following:

- Look for nearby high-current wiring—avoid any parallel runs to the analog signal wires
- Check the impedance between the chassis grounds of the inverter and the analog signal source equipment-a good connection will have a low impedance
- Check the analog signal ground impedance from the inverter to the analog signal source
- Avoid ground loops... measure the current (or voltage drop) on the chassis ground and signal ground connections; the ideal value is zero

After taking steps to minimize the analog signal noise sources, increase the filter time constant (A016) until the motor output frequency (when commanded by analog inputs) becomes stable.

The following tables show the available analog input settings. Parameters A006, A005, and input terminal [AT] determine the External Frequency Command input terminals that are available and how they function. The Trim Frequency input [O2]-[L] is available (when check marked) for some settings. Other settings make the reverse direction (in addition to forward) available for bipolar input settings (when check marked). A bipolar input responds to positive input voltages with a forward motor rotation, and to negative input voltages with reverse motor rotation.

| A006 | A005 | [AT] | External Frequency Command Input | Trim Frequency Command Input | Reverse avail. (bipolar input) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline 00 \\ & \text { OR } \\ & 03 \end{aligned}$ | 00 | OFF | [O] | $x$ | x |
|  |  | ON | [OI] | $x$ | $x$ |
|  | 01 | OFF | [0] | $x$ | x |
|  |  | ON | [O2] | x | $\checkmark$ |
| 01 | 00 Example <br> 1 | OFF | [0] | [O2] | $x$ |
|  |  | ON | [OI] | [O2] | X |
|  | 01 | OFF | [0] | [O2] | $x$ |
|  |  | ON | [O2] | $x$ | $\checkmark$ |
| 02 | 00Example | OFF | [0] | [O2] | $\checkmark$ |
|  |  | ON | [OI] | [O2] | $\checkmark$ |
|  | 01 | OFF | [O] | [02] | $\checkmark$ |
|  |  | ON | [O2 | x | $\checkmark$ |
| - | 02 | OFF | [O] | [O2] | $x$ |
|  |  | ON | Keypad pot. | [02] | $x$ |
|  | 03 | OFF | [OI] | [O2] | $x$ |
|  |  | ON | Keypad pot. | [02] | $x$ |
|  | 04 | OFF | [O2] | x | $\checkmark$ |
|  |  | ON | Keypad pot. | [O2] | x |

The table below applies when the [AT] input function is not assigned to any intelligent input terminal. The A005 setting, normally used in conjunction with an [AT] input, is ignored.

| A006 | A005 | [AT] | External Frequency Command Input | Trim Frequency Command Input | Reverse avail. (bipolar input) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | - | (not assigned to any input terminal) | [O2] | $x$ | $\checkmark$ |
| 01 | - |  | Summation of [O] and [OI] | [O2] | $x$ |
| 02 | - |  | Summation of [O] and [OI] | [O2] | $\checkmark$ |
| 03 | - |  | Summation of [O] and [OI] | x | x |

CAUTION: Whenever the [AT] input function is not assigned to any input terminal and reverse rotation is not desired or is unsafe, be sure to set $\mathrm{A} 006=01$. This setting makes the [O2] input unipolar only.

The examples below show how the use of the [AT] input during operation enables/disables the Trim Frequency Command input [O2]-[L]. The [O2]-[L] input may be used alone, or as an offset control for the primary analog input.


Wiring Examples
Using an external potentiometer is a common way to control the inverter output frequency (and a good way to learn how to use the analog inputs). The potentiometer uses the built-in 10 V reference $[\mathrm{H}]$ and the analog ground [L] for excitation, and the voltage input [O] for the signal. By default, the [AT] terminal selects the voltage input when it is OFF. Take care to use the proper resistance for the potentiometer, which is 1 to $2 \mathrm{k} \Omega 2$ Watts.


1 to $2 \mathrm{k} \Omega, 2 \mathrm{~W}$

Voltage Input - The $0-10 \mathrm{~V}$ voltage input circuit uses terminals [L] and [O]. Attach the signal cable's shield wire to terminal [L] on the inverter only. DO NOT ground the shield at its other end. Maintain the voltage within specifications (do not apply negative voltage). Normally a full-span input level ( 10 V ) will give the maximum motor frequency. You can use parameter A014 to select a lower voltage for full output frequency (such as using a 5 V input signal).
Bipolar Voltage Input - The $-10 / 0 /+10 \mathrm{~V}$ voltage input circuit uses terminals [L] and [O2]. Attach the cable's shield wire to terminal [L] on the inverter only. Maintain the voltage within specifications. Only apply a negative voltage if this input is configured for bipolar use.
Current Input - The current input circuit uses terminals [OI] and [L]. The current comes from a sourcing type transmitter; a sinking type will not work! This means the current must flow into terminal [OI], and terminal [L] is the return back to the transmitter. The input impedance from [OI] to [L] is 250 Ohms. Attach the cable's shield wire to terminal [L] on the inverter only.

Standard Voltage Input


Bipolar Voltage Input

-10 to 9.6 VDC, 0 to 10 V nominal

Current Input


4 to 19.6 mA DC, 4 to 20 mA nominal

See I/O specs on page 4-9.

## Analog Output Operation

In the system design for inverter applications it is sometimes useful to monitor inverter operation from a remote location. In some cases, this requires only a panel-mounted analog meter (moving-coil type). In other cases, a controller device such as a PLC may monitor and command the inverter frequency and other functions. The inverter can transmit the (real-time) output frequency, current, torque, or other parameters to the controller to confirm actual operation. The monitor output terminal [FM] serves these purposes.
[FM] Terminal
The inverter provides an analog/digital output on terminal [FM] (frequency monitor). It uses terminal [CM1] as digital GND reference. While many applications use this terminal to monitor the output frequency, you can configure terminal [FM] to transmit one of several parameters. Most use pulse-width modulation (PWM) to represent the value, while one parameter uses frequency modulation (FM) to represent the
 value. Do not confuse the notation for terminal [FM] (with brackets) with FM signal type.
The following table lists the configurations for terminal [FM]. Use function C027 to configure.

| Func. | Code | Description | Waveform | Full Scale Value |
| :---: | :---: | :--- | :---: | :---: |
| C027 | 00 | Output frequency | PWM | 0 - Max. frequency (Hz) |
|  | 01 | Output current | PWM | $0-200 \%$ |
|  | 02 | Output torque $* 1$ | PWM | $0-200 \%$ |
|  | 03 | Output frequency | FM | $0-$ Max. frequency (Hz) |
|  | 04 | Output voltage | PWM | $0-100 \%$ |
|  | 05 | Input electric power | PWM | $0-200 \%$ |
|  | 06 | Thermal load ratio | PWM | $0-100 \%$ |
|  | 07 | LAD frequency | PWM | $0-$ Max. frequency $(\mathrm{Hz})$ |

Note 1: Display substitutes only during sensorless vector control, 0 Hz domain sensorless vector control, and vector control
PWM Signal Type The pulse-width modulated signal at terminal [FM] is primarily designed for driving a movingcoil meter. The pulse-width modulated signal is automatically averaged by the inertia of the moving-coil mechanism-converting the PWM signal to an analog representation. Be sure to use a 10 V full-scale DC voltmeter.

The signal characteristics of terminal [FM] in PWM signal configuration is shown below

$[\mathrm{FM}]$ output value $=\frac{\mathrm{t}}{\mathrm{T}}$
B081 $=[F M]$ terminal 8 -bit gain setting
$\mathrm{C} 27=00,01,02,04,05,06,07$
Selects FM type output
Period T $=6.4 \mathrm{~ms}$ constant $(156 \mathrm{~Hz})$


To calibrate the meter reading, generate a full-scale output (always ON) at terminal [FM]. Then use parameter B081 (gain setting from 0 to 255) to adjust the corresponding full-scale reading of the meter. For example, when the inverter output frequency is 60 Hz , change the value of B081 so that the meter reads 60 Hz .

TIP: When using the analog meter for monitoring, adjust the meter so it has a zero reading when the [FM] output is zero. Then use scale factor B081 to adjust the [FM] output so the maximum frequency in the inverter corresponds to a full-scale reading on the meter.

NOTE: The indicator accuracy after adjustment is about $\pm 5 \%$. Depending on the motor, the accuracy may exceed this value.

PWM Smoothing Circuit - Note that standard analog output signals are available on terminals [AM] and [AMI], covered in the next section. However, you may also wish to smooth the PWM signal at the [FM] terminal and convert it to an analog signal. The [FM] terminal will then generate a relatively stable DC analog voltage that represents the output value. To do this, use the circuit shown to the right. Note the output impedance of the circuit is at least $82 \mathrm{k} \Omega$, so the monitoring device needs an input impedance of $1 \mathrm{M} \Omega$
 or greater. Otherwise, the impedance of the smoothing circuit will cause a nonlinearity in the reading.

FM Signal Type
The frequency-modulated output at terminal [FM] varies its frequency with the inverter output frequency (when C027=03). The signal at [FM] uses the parameter A004 Maximum frequency setting. For example, if A004 $=60 \mathrm{~Hz}$, then the maximum signal value at $[\mathrm{FM}]$ will be at 60 Hz . This frequency is digitally controlled for accuracy, and does not use the B081 gain setting when C027=03 (frequency modulation).

[AM] and [AMI] Terminals

The [AM] and [AMI] terminals provide signals to monitor various inverter parameters such as output frequency, output current, and torque. The terminals provide these analog signal types:

- [AM] terminal: $0-10 \mathrm{~V}$ analog output signal
- [AMI] terminal: 4-20mA analog output signal

These signals both use the [L] terminal for signal return. Eight different inverter parameters may be monitored independently at either the [AM] or [AMI] terminal, as listed in the table below. Use C028 to configure terminal [AM], and C029 to configure terminal [AMI].


| Func. | Terminal | Code | Description | Full Scale Value |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{C} 028 / \\ \mathrm{C} 029 \end{gathered}$ | $\begin{aligned} & {[\mathrm{AM}] /} \\ & {[\mathrm{AMI}]} \end{aligned}$ | 00 | Output frequency | 0 - Max. frequency ( Hz ) |
|  |  | 01 | Output current | 0-200\% |
|  |  | 02 | Output torque *1 | 0-200\% |
|  |  | 04 | Output voltage | 0-100\% |
|  |  | 05 | Input electric power | 0-200\% |
|  |  | 06 | Thermal load ratio | 0-100\% |
|  |  | 07 | LAD frequency | $0-\mathrm{Max}$. frequency ( Hz ) |

Note 1: Display of torque is possible only during sensorless vector control, 0 Hz domain sensorless vector control, and vector control with feedback

The analog signals may need some adjustment for gain or offset to compensate for variances in the system. For example, the signals may drive a panel meter and require a full-scale gain adjustment. The table below lists the function codes and their descriptions. The [AM] and [AMI] terminals have separate gain and offset adjustments. Note the default values.

| Func. | Terminal | Description | Range | Default |
| :---: | :---: | :--- | :---: | :---: |
| B080 | $[A M]$ | Gain adjustment | $0-255$ | 180 |
| C086 | $[A M]$ | Offset Adjustment | $0.0-10.0 \mathrm{~V}$ | 0.0 V |
| C087 | $[A M I]$ | Gain adjustment | $0-255$ | 80 |
| C088 | $[A M I]$ | Offset Adjustment | $0.0-20.0 \mathrm{~mA}$ | 0.0 mA |

## Setting Motor Constants for Vector Control

Introduction
These advanced torque control algorithms improve performance, particularly at low speeds:

- Sensorless Vector Control - improved torque control at output frequencies down to 0.5 Hz . Use A044=03 (1st motor) or A244=03 (2nd motor) to select sensorless vector control.
- Sensorless Vector Control, $\mathbf{0 H z}$ Domain - improved torque control at output frequencies from 0 to 2.5 Hz . Use A044=04 (1st motor) or A244=04 (2nd motor) to select sensorless vector control, 0 Hz domain.
- Vector Control with Feedback - improved torque control at all speeds, while providing the most accurate speed regulation of all torque control algorithms. Use A044=05 to select vector control with feedback.

These three control algorithms require the inverter's motor constants to accurately match the characteristics of the particular motor connected to your inverter. Simply using the inverter's default parameters with the vector control modes may not produce satisfactory results. The auto-tuning procedure described later in this section is recommended for most applications needing vector control. It determines and records the characteristics of the attached motor. However, it is possible to enter the motor constants directly if the motor manufacturer has provided that data.

After performing an initial auto-tuning procedure for your motor, you have an additional option: adaptive tuning. The adaptive tuning parameters use the auto-tuning procedure's results as starting values. Then, each time the motor runs normally in your application, the inverter tunes the parameters again to match the motor. This compensates for temperature changes, etc., further optimizing the values.
The following table lists the parameters associated with motor constant settings. Function H002 selects the set of motor constants that you want the inverter to use in normal use. Standard constants (select with $\mathrm{H} 002=00$ ) include H 020 to H 024 . Auto-tuned constants (select with H002=01) include H030 to H034. Remember that you have to do the auto-tuning procedure in this section before using either auto-tuned constants or the adaptive mode ( $\mathrm{H} 002=02$ ).

| Func. | Name | Data | Notes |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { A044 / } \\ \text { A244 / } \\ \text { A344 } \end{gathered}$ | V/f characteristic curve selection, 1st / 2nd / 3rd motors | 00 | V/f constant torque |
|  |  | 01 | V/f variable torque |
|  |  | 02 | V/f free-setting curve |
|  |  | 03 | Sensorless vector control (SLV) |
|  |  | 04 | Sensorless vector control, 0 Hz domain |
|  |  | 05 | Vector control with encoder feedback |
| H002 | Motor data selection, 1st motor | 00 | Standard motor parameters |
|  |  | 01 | Auto-tuning parameters |
|  |  | 02 | Adaptive tuning parameters |
| H003 | Motor capacity, 1st motor | $\begin{gathered} 0.2-75, \\ 0.2-160 \end{gathered}$ | kW, up to -550 xxx models <br> $\mathrm{kW},-750 \mathrm{xxx}$ to -1500 xxx models |
| H004 | Motor poles setting, 1st motor | 2/4/6/8 | Units: poles |
| H020 | Motor constant R1, 1st motor | 0.000-65.53 | Units: ohms |
| H021 | Motor constant R2, 1st motor | 0.000-65.53 | Units: ohms |
| H022 | Motor constant L, 1st motor | 0.00-655.3 | Units: mH |
| H023 | Motor constant Io, 1st motor | 0.00-655.3 | Units: A |
| H024 | Motor constant J, 1st motor | 0.001-9999 | Units: $\mathrm{kgm}^{2}$ |
| H030 | Auto-tuned constant R1, 1st motor | 0.000-65.53 | Units: ohms |


| Func. | Name | Data | Notes |
| :--- | :--- | :---: | :--- |
| H031 | Auto-tuned constant R2, 1st motor | $0.000-65.53$ | Units: ohms |
| H032 | Auto-tuned constant L, 1st motor | $0.00-655.3$ | Units: mH |
| H033 | Auto-tuned constant Io, 1st motor | $0.00-655.3$ | Units: A |
| H034 | Auto-tuned constant J, 1st motor | $0.001-9999$ | Units: kgm ${ }^{2}$ |

The inverter has three separate motor constant sets named $1 s t, 2 n d$, and $3 r d$. The 1st motor constant set is the default, while the SET and SET2 intelligent inputs select the 2nd and 3rd constant sets, respectively. The torque control methods are valid to use only if a particular motor constant set includes parameters for the selected control method. The following table lists the vector control methods and shows the ones that are valid for each motor constant set.:

| Vector Control Method | 1st motor | 2nd motor | 3rd motor |
| :---: | :---: | :---: | :---: |
| V/f constant torque | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| V/f variable torque | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| V/f free-setting curve | $\checkmark$ | $\checkmark$ | $x$ |
| Sensorless vector control (SLV) | $\checkmark$ | $\checkmark$ | $x$ |
| Sensorless vector control, 0 Hz domain | $\checkmark$ | $\checkmark$ | $x$ |
| Vector control with encoder feedback | $\checkmark$ | $x$ | X |

The motor data selection is available only to the 1st motor constant set, selected by function H004. By default, the 2nd and 3rd motor constants sets only store standard motor parameters. The table below shows this arrangement.

| Motor data selection | 1st motor | 2nd motor | 3rd motor |
| :--- | :---: | :---: | :---: |
| Standard motor parameters | $\boldsymbol{\nu}$ | $\boldsymbol{\nu}$ | $\boldsymbol{\gamma}$ |
| Auto-tuning parameters | $\boldsymbol{\nu}$ | $\boldsymbol{x}$ | $\mathbf{x}$ |
| Adaptive tuning parameters | $\boldsymbol{\nu}$ | $\mathbf{x}$ | $\mathbf{x}$ |

When motor constant values are available from the motor manufacturer, you can enter them directly. The available motor constant parameters (storage locations) depend on the motor constant set (1st, 2nd, or 3rd) according to the following table.

| Motor data selection | 1st motor | 2nd motor | 3rd motor |
| :--- | :--- | :---: | :---: |
| Standard motor parameters | H 020 to H 024 | H 220 to H 224 | - |
| Auto-tuning parameters | H 030 to H 034 | - | - |
| Adaptive tuning parameters | H 030 to H 034 | - | - |

Auto-tuning of Motor Constants

The SJ7002 inverter features auto-tuning, which detects and records the motor characteristic parameters to use in all vector control modes. Auto-tuning determines the resistance and inductance of motor windings. Therefore, the motor must be connected to the inverter for this procedure. Note that the auto-tuning feature is not associated with PID loop operation, which is common on some control devices. The auto-tuning procedure must be conducted while the inverter is stopped (not in Run mode), so it can use special output pulses to detect motor characteristics.
When using the inverter in sensorless vector control, sensorless vector control -0 Hz domain, or vector control with encoder feedback, the motor circuit constants are important. If they are unknown, then you must first conduct the auto-tuning procedure. The inverter will determine the constants and write new values for the related "H" Group settings. The auto-tuning procedure requires that the inverter be configured to operate the 1st motor (do not set the inverter to use 2 nd and 3 rd motor data during an auto-tuning procedure).

| Func. | Name | Range | Notes |
| :---: | :---: | :---: | :---: |
| H001 | Auto-tuning setting | 00 | Disabled |
|  |  | 01 | Enabled, without motor rotation |
|  |  | 02 | Enabled, with motor rotation |
| H002 | Motor data selection, 1st motor | 00 | Standard motor parameters |
|  |  | 01 | Auto-tuning parameters |
|  |  | 02 | Adaptive tuning parameters |
| H003 | Motor capacity, 1st motor | $\begin{aligned} & 0.2-75, \\ & 0.2-160 \end{aligned}$ | kW , up to -550 xxx models kW, -750xxx to -1500xxx models |
| H004 | Motor poles setting, 1st motor | 2/4/6/8 | Units: poles |
| H030 | Auto-tuned motor constant R1, 1st motor | - | Units: ohms |
| H031 | Auto-tuned motor constant R2, 1st motor | - | Units: ohms |
| H032 | Auto-tuned motor constant L, 1st motor | - | Units: mH |
| H033 | Auto-tuned motor constant Io, 1st motor | - | Units: A |
| H034 | Auto-tuned motor constant J, 1st motor | - | Units: $\mathrm{kgm}^{2}$ |
| A003 | Base frequency setting | 30 to maximum freq. | Units: Hz |
| A051 | DC braking enable | 00 | Disabled (Disable during autotuning) |
|  |  | 01 | Enabled |
| A082 | AVR voltage select | 200/215/220/230/240 | Valid for 200 V class inverters |
|  |  | $\begin{gathered} 380 / 400 / 415 / 440 / \\ 460 / 480 \end{gathered}$ | Valid for 400 V class inverters |

Please read the following Warning before running the auto-tuning procedure on the next page.


WARNING: You may need to disconnect the load from the motor before performing autotuning. The inverter runs the motor forward and backward for several seconds without regard to load movement limits.

Preparation for Auto-tuning Procedure - Be sure to study the preparation items and verify the related inverter configuration before going further in this procedure.

1. Adjust the motor base frequency (A003) and the motor voltage selection (A082) to match the specifications of the motor used in the auto-tuning procedure.
2. Verify that the motor is not more than one frame size smaller than the rated size for he inverter. Otherwise, the motor characteristic measurements may be inaccurate.
3. Be sure that no outside force will drive the motor during auto-tuning.
4. If DC braking is enabled ( $\mathrm{A} 051=01$ ), the motor constants will not be accurately set. Therefore, disable DC braking (A051=00) before starting the auto-tuning procedure.
5. When auto-tuning with motor rotation $(\mathrm{H} 001=02)$, take care to verify the following points:
a. The motor will rotate up to $80 \%$ of the base frequency; make sure that this will not cause any problem.
b. Do not attempt to either run or stop the motor during the auto-tuning procedure unless it is an emergency. If this occurs, initialize the inverter's parameters to the factory default settings (see "Restoring Factory Default Settings" on page 6-16). Then reprogram the parameters unique to your application, and initiate the auto-tuning procedure again.
c. Release any mechanical brake that would interfere with the motor rotating freely.
d. Disconnect any mechanical load from the motor. The torque during auto-tuning is not enough to move some loads.
e. If the motor is part of a mechanism with limited travel (such as lead screw or elevator), select $\mathrm{H} 001=01$ so that the auto-tuning will not cause motor rotation.
6. Note that even when you select $\mathrm{H} 001=01$ for no rotation, sometimes the motor will rotate.
7. When using a motor that is one frame size smaller than the inverter rating, enable the overload restriction function. Then set the overload restriction level to 1.5 times the rated output current of the motor.

After the preparations above are complete, perform the auto-tuning procedure by following the steps below.

1. Set $\mathrm{H} 001=01$ (auto-tuning without motor rotation) or $\mathrm{H} 001=02$ (auto-tuning with motor rotation).
2. Turn the Run command ON . The inverter will then automatically sequence through the following actions:
a. First AC excitation (motor does not rotate)
b. Second AC excitation (motor does not rotate)
c. First DC excitation (motor does not rotate)
d. V/F running-this step occurs only if $\mathrm{H} 001=02$ (motor accelerates up to $80 \%$ of the base frequency)
e. SLV running-this step occurs only if $\mathrm{H} 001=02$ (motor accelerates up to $\mathrm{x} \%$ of the base frequency), where "x" varies with time T during this step:
$\mathrm{x}=40 \%$ when $\mathrm{T}<50$ s
$\mathrm{x}=20 \%$ when $50 \mathrm{~s}<\mathrm{T}<100$ s
$\mathrm{x}=10 \%$ when $\mathrm{T}=>100$ s
f. Second DC excitation
g. Displays the pass/fail result of the auto-tuning (see next page)

NOTE: During the AC and DC motor excitation steps above, you may notice that the motor makes a slight humming sound. This sound is normal.

If the auto-tuning procedure is successful, the inverter updates the motor characteristic parameters and indicates normal termination of the procedure as shown. Pressing any key on the keypad will clear the result from the display.

- Trip during auto-tuning - A trip event will cause the autotuning sequence to quit. The display will show the error code for the trip rather than the abnormal termination indication. After eliminating the cause of the trip, then conduct the autotuning procedure again.
- Power loss or stop during auto-tuning - If the auto-tuning procedure is interrupted by power loss, the Stop key, or by


Normal termination


Abnormal termination turning OFF the Run command, the auto-tuning constants may or may not be stored in the inverter. It will be necessary to restore the inverter's factory default settings (see "Restoring Factory Default Settings" on page 6-16). After initializing the inverter, then perform the auto-tuning procedure again.

- Free V/F setting - The auto-tuning procedure will have an abnormal termination if the control mode of the inverter is set for free V/F setting.


## Adaptive Autotuning of Motor Constants

The adaptive auto-tuning feature refines the motor constants by checking the motor characteristic while it in the normal running temperature range.

Preparation for Adaptive Auto-tuning - Be sure to study the preparation items and verify the related inverter configuration before going further in this procedure.

1. It is necessary to first perform the auto-tuning procedure in the section above, since adaptive auto-tuning requires accurate initial constant values.
2. Adaptive auto-tuning is valid only for the 1 st motor data (do not use 2 nd or 3rd motor data settings).
3. The adaptive auto-tuning sequence actually begins as the motor decelerates to a stop from a Run command you initiate. However, the sequence still continues for five (5) more seconds. Giving another Run command during this 5 -second time period will halt the adaptive autotuning. It will resume the next time the motor runs and decelerates to a stop.
4. If DC braking is enabled, then the adaptive auto-tuning sequence executes after DC braking brings the motor to a stop.
5. Note that when intelligent terminal [SON] Speed Servo ON or [FOC] Current Forcing is assigned, the online auto-tuning function is not available.

After reading and following the preparation steps above, then configure the inverter for adaptive auto-tuning by following these steps:

1. Set $\mathrm{H} 002=02$ for adaptive auto-tuning procedure
2. Set $\mathrm{H} 001=00$ to disable the (manual) auto-tuning procedure
3. Turn the Run command ON.
4. Run the motor for an appropriate time until it reaches its normal operating temperature range. Remember that the purpose of adaptive auto-tuning is optimize the inverter for typical running conditions.
5. Stop the motor (or turn the Run command OFF), which initiates an adaptive auto-tuning. Wait at least five (5) seconds before issuing any other command to the inverter.

With the above configuration, the inverter automatically runs the adaptive auto-tuning sequence each time the motor runs and decelerates to a stop. This continuously adapts the SLV control algorithm to slight changes in the motor constants during operation.

NOTE: It is not necessary to wait 5 seconds after each time the motor runs before running again. When the motor stops for less than 5 seconds before running again, the inverter stops the adaptive tuning sequence and keeps the current motor constant values in memory. The inverter will attempt the adaptive auto-tuning at the next run/stop event of the motor.

Manual Setting of Motor Constants

With vector control, the inverter uses the output current, output voltage, and motor constants to estimate the motor torque and speed. It is possible to achieve a high starting torque and accurate speed control at low frequency

- Sensorless Vector Control - improved torque control at output frequencies down to 0.5 Hz . Use A044=03 (1st motor) or A244=03 (2nd motor) to select sensorless vector control.
- Sensorless Vector Control, $\mathbf{0 H z}$ Domain - improved torque control at output frequencies from 0 to 2.5 Hz . Use A044=04 (1st motor) or A244=04 (2nd motor). For this vector control method, we recommend using a motor that is one frame size smaller than the inverter size.
- Sensorless Vector Control with Feedback - improved torque control at all speeds, while providing the most accurate speed regulation

If you do use any vector control methods, it is important that the motor constants stored in the inverter match the motor. We recommend first using the auto-tuning procedure in the previous section. If satisfactory performance through auto-tuning cannot be fully obtained, please adjust the motor constants for the observed symptoms according to the table below.

CAUTION: If the inverter capacity is more than twice the capacity of the motor in use, the inverter may not achieve its full performance specifications.

| Operation Status | Symptom | Adjustment | Parameter |
| :---: | :---: | :---: | :---: |
| Powered running | When the speed deviation is negative | Slowly increase the motor constant R 2 in relation to auto-tuning data, within 1 to 1.2 times preset R2 | H021 / H221 |
|  | When the speed deviation is positive | Slowly decrease the motor constant R 2 in relation to auto-tuning data, within 0.8 to 1 times preset R2 | H021 / H221 |
| Regeneration (status with a decelerating torque) | When low frequency (a few Hz ) torque is insufficient | Slowly increase the motor speed constant R1 in relation to autotuning data within 1 to 1.2 times R1 | H020 / H220 |
|  |  | Slowly increase the motor constant IO in relation to auto-tuning data, within 1 to 1.2 times preset IO | H023 / H223 |
| During acceleration | A sudden jerk at start of rotation | Increase motor constant J slowly within 1 to 1.2 times the preset constant | H024 / H224 |
| During deceleration | Unstable motor rotation | Decrease the speed response | H05, H205 |
|  |  | Set motor constant J smaller than the preset constant | H024, H224 |
| During torque limiting | Insufficient torque during torque limit at low speed | Set the overload restriction level lower than the torque limit level | $\begin{gathered} \text { B021, } \\ \text { B041 to B044 } \end{gathered}$ |
| At low-frequency operation | Irregular rotation | Set motor constant J larger than the preset constant | H024, H244 |

When using a motor one frame size smaller than the inverter rating, the torque limit value (B041 to B044) is from the following formula and the value of the actual motor torque limit is calculated by the formula. Do not set a value in B041 to B044 that results in an actual torque greater than $200 \%$ or you risk motor failure.

For example, suppose you have a 0.75 kW inverter and a 0.4 kW motor. The torque limit setting value that is for $\mathrm{T}=200 \%$ is set (entered) as $106 \%$, shown by the following formula:

Torque limit setting $=\frac{\text { Actual torque limit } \times \text { Motor capacity }}{\text { Inverter capacity }}=\frac{200 \% \times 0.4 \mathrm{~kW}}{0.75 \mathrm{~kW}}=106 \%$

## PID Loop Operation

In standard operation, the inverter uses a reference source selected by parameter A001 for the output frequency, which may be a fixed value (F001), a variable set by the front panel potentiometer, or value from an analog input (voltage or current). To enable PID operation, set A071 = 01. This causes the inverter to calculate the target frequency, or setpoint. An optional intelligent input assignment (code 23), PID Disable, will temporarily disable PID operation when active.
A calculated target frequency can have a lot of advantages. It lets the inverter adjust the motor speed to optimize some other process variable of interest, potentially saving energy as well. Refer to the figure below. The motor acts upon the external process. To control that external process, the inverter must monitor the process variable. This requires wiring a sensor to either the analog input terminal [O] (voltage) or terminal [OI] (current).


When enabled, the PID loop calculates the ideal output frequency to minimize the loop error. This means we no longer command the inverter to run at a particular frequency, but we specify the ideal value for the process variable. That ideal value is called the setpoint, and is specified in the units of the external process variable. For a pump application it may be gallons/minute, or it could be air velocity or temperature for an HVAC unit. Parameter A075 is a scale factor that relates the external process variable units to motor frequency. The figure below is a more detailed diagram of the PID function.


## Configuring the Inverter for Multiple Motors

## Simultaneous Connections



Inverter Configuration for Multiple Motor Types

For some applications, you may need to connect two or more motors (wired in parallel) to a single inverter's output. For example, this is common in conveyor applications where two separate conveyors need to have approximately the same speed. The use of two motors may be less expensive than making the mechanical link for one motor to drive multiple conveyors.
Some of the requirements when using multiple motors with one drive are:


- Use only V/F (variable-frequency) control; do not use SLV (sensorless vector control).
- The inverter output must be rated to handle the sum of the currents from the motors.
- You must use separate thermal protection switches or devices to protect each motor. Locate the device for each motor inside the motor housing or as close to it as possible.
- The wiring for the motors must be permanently connected in parallel (do not remove one motor from the circuit during operation).

NOTE: The motor speeds are identical only in theory. That is because slight differences in their loads will cause one motor to slip a little more than another, even if the motors are identical . Therefore, do not use this technique for multi-axis machinery that must maintain a fixed position reference between its axes.

Some equipment manufacturers may have a single type of machine that has to support three different motor types-and only one motor will be connected at a time. For example, an OEM may sell basically the same machine to the US market and the European market. Some reasons why the OEM needs two motor profiles are:

- The inverter power input voltage is different for these markets.
- The required motor type is also different for each destination.

In other cases, the inverter needs two profiles because the machine characteristics vary according to these situations:

- Sometimes the motor load is very light and can move fast. Other times the motor load is heavy and must move slower. Using two profiles allows the motor speed, acceleration and deceleration to be optimal for the load and avoid inverter trip (fault) events.
- Sometimes the slower version of the machine does not have special braking options, but a higher performance version does have braking features.

Having multiple motor profiles lets you store several "personalities" for motors in one inverter's memory. The inverter allows the final selection between the three motor types to be made in the field through the use of intelligent input terminal functions [SET] and [SET3]. This provides an extra level of flexibility needed in particular situations. See the following page.

Parameters for the second motor and third motors have function codes of the form x 2 xx and x3xx respectively. They appear immediately after the first motor's parameter in the menu listing order. The following table lists the parameters that have the second/third parameter registers for programming.

| Function Name | Parameter Codes |  |  |
| :---: | :---: | :---: | :---: |
|  | 1st motor | 2nd motor | 3rd motor |
| Acceleration time setting (Acceleration 1) | F002 | F202 | F302 |
| Deceleration time setting (Deceleration 1) | F003 | F203 | F303 |
| Base frequency setting | A003 | A203 | A303 |
| Maximum frequency setting | A004 | A204 | A304 |
| Multi-speed frequency setting | A020 | A220 | A320 |
| Torque boost method selection | A041 | A241 | - |
| Manual torque boost value | A042 | A242 | A342 |
| Manual torque boost frequency adjustment | A043 | A243 | A343 |
| V/F characteristic curve selection | A044 | A244 | A344 |
| Automatic torque boost voltage gain | A046 | A246 | - |
| Automatic torque boost slip gain | A047 | A247 | - |
| Frequency upper limit setting | A061 | A261 | - |
| Frequency lower limit setting | A062 | A262 | - |
| Second acceleration time setting (Acceleration 2) | A092 | A292 | A392 |
| Second deceleration time setting (Deceleration 2) | A093 | A293 | A393 |
| Select method to use 2nd acceleration/deceleration | A094 | A294 | - |
| Acc1 to Acc2 frequency transition point | A095 | A295 | - |
| Dec1 to Dec2 frequency transition point | A096 | A296 | - |
| Level of electronic thermal setting | B012 | B212 | B312 |
| Select electronic thermal characteristic | B013 | B213 | B313 |
| Select motor constant | H002 | H202 | - |
| Motor capacity setting | H003 | H203 | - |
| Motor poles setting | H004 | H204 | - |
| Motor constant Kp setting (Standard, Auto tuning) | H005 | H205 | - |
| Motor stabilization constant | H006 | H206 | - |
| Motor constant R1 setting (Standard, Auto tuning) | H020/H030 | H220/H230 | - |
| Motor constant R2 setting (Standard, Auto tuning) | H021/H031 | H221/H231 | - |
| Motor constant L setting (Standard, Auto tuning) | H022/H032 | H222/H232 | - |
| Motor constant Io setting (Standard, Auto tuning) | H023/H033 | H223/H233 | - |


| Function Name | Parameter Codes |  |  |
| :--- | :---: | :---: | :---: |
|  | 1st motor | 2nd motor | 3rd motor |
| Motor constant J setting (Standard, Auto <br> tuning) | H024/H034 | H224/H234 | - |
| PI proportional gain | H050 | H250 | - |
| P proportional gain setting | H052 | H252 | - |
| 0Hz SLV limit for 1st motor | H060 | H260 | - |

## Inverter System Accessories

In This Chapter....page

- Introduction ..... $\underline{2}$
- Component Descriptions ..... 3
- Dynamic Braking ..... 6


## Introduction

A motor speed control system will obviously include a motor and inverter, as well as fuses for safety. If you are connecting a motor to the inverter on a test bench just to get started, that's all you may need for now. But a fully developed system can also have a variety of additional components. Some can be for noise suppression, while others may enhance the inverter's braking performance. The figure below shows a system with several possible optional components, and the table gives part number information.


NOTE: The Hitachi part number series for accessories includes different sizes of each part type, specified by the -x suffix. Hitachi product literature can help match size and rating of your inverter to the proper accessory size.

Each inverter accessory comes with its own printed instruction manual. Please refer to those manuals for complete installation details. This chapter gives only an overview of these optional system devices. For more information on Hitachi inverter system accessories, please contact your Hitachi sales office or distributor.

## Component Descriptions

AC Reactors, Input Side

This is useful in suppressing harmonics induced on the power supply lines, or when the main power voltage imbalance exceeds $3 \%$ (and power source capacity is more than 500 kVA ), or to smooth out line fluctuations. It also improves the power factor.
In the following cases for a general-purpose inverter, a large peak current flows on the main power supply side, and is able to destroy the inverter module:

- If the unbalanced factor of the power supply is $3 \%$ or higher
- If the power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more)
- If abrupt power supply changes are expected

Examples of these situations include:

1. Several inverters are connected in parallel, sharing the same power bus
2. A thyristor converter and an inverter are connected in parallel, sharing the same power bus
3. An installed phase-advance (power factor correction) capacitor opens and closes

Where these conditions exist or when the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where the effects of an indirect lightning strike is possible, install a lightning conductor.

## Example calculation:

$\mathrm{V}_{\mathrm{RS}}=205 \mathrm{~V}, \mathrm{~V}_{\mathrm{ST}}=203 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=197 \mathrm{~V}$,
where $\mathrm{V}_{\mathrm{RS}}$ is $\mathrm{R}-\mathrm{S}$ line voltage, $\mathrm{V}_{\mathrm{ST}}$ is $\mathrm{S}-\mathrm{T}$ line voltage, $\mathrm{V}_{\mathrm{TR}}$ is $\mathrm{T}-\mathrm{R}$ line voltage

$$
\text { Unbalance factor of voltage }=\frac{\text { Max. line voltage }(\text { min. })-\text { Mean line voltage }}{\text { Meanline voltage }} \times 100
$$

$$
=\frac{V_{R S}-\left(V_{R S}+V_{S T}+V_{T R}\right) / 3}{\left(V_{R S}+V_{S T}+V_{T R}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5 \%
$$

Please refer to the documentation that comes with the AC reactor for installation instructions.
AC Reactor or LCR Filter, Output Side

This reactor reduces the vibrations in the motor caused by the inverter's switching waveforms, by smoothing the waveforms to approximate commercial power quality. It is also useful to reduce the reflected voltage wave phenomenon when wiring from the inverter to the motor is more than 10 m in length. Please refer to the documentation that comes with the AC reactor for installation instructions.

## Zero-phase <br> Reactor (RF Noise Filter)

## EMI Filter

Electrical noise interference may occur on nearby equipment such as a radio receiver. The zero-phase reactor helps reduce radiated noise from the inverter wiring. It can be used on the input or output side of the inverter. The example zero-phase reactor shown to the right comes with a mounting bracket. The wiring must go through the opening to reduce the RF component of the electrical noise. Loop the wires three times (four turns) to attain the full RF filtering effect. For larger wire sizes, place
 multiple zero-phase reactors (up to four) side-by-side for a greater filtering effect.

The EMI filter reduces the conducted noise on the power supply wiring generated by the inverter. Connect the EMI filter to the inverter primary (input side). The NF-CEH-x series filter is required for compliance to the EMC Class A directive (Europe) and C-TICK (Australia). See "CE-EMC Installation Guidelines" on page D-2.

WARNING: The EMI filter has high internal leakage current from power wiring to the chassis. Therefore, connect the chassis ground of the EMI filter before making the power connections to avoid danger of shock or injury.


NF-CEHxx

## Ferrite Core

RF Noise Filter (Capacitive)

To meet EMC Class B limit an optional ferrite core ( $\mathrm{FC}-\mathrm{Hx}$ ) must be inserted between the NF-CEHx filter (above) and the inverter.

This capacitive filter reduces radiated noise from the main power wires in the inverter input side. This filter is not for achieving CE compliance and is applicable only to the input side only of the inverter. It comes in two versions-for 200 V class inverters or 400 V class inverters. Please refer to the documentation that comes with the radio noise filter for installation instructions.

The DC choke (reactor) suppresses harmonics generated by the inverter. It attenuates the highfrequency components on the inverter's internal DC bus (link). However, note that it does not protect the diode rectifiers in the inverter input circuit.

## Expansion Cards The SJ-FB Encoder Feedback Board installs in

 the inverter's expansion bay, which can accept up to two expansion cards. The encoder card accepts two-channel incremental encoder signals. Position feedback is essential for certain torque-control algorithms, and is useful for improving low-speed performance. The card can also generate linear acceleration/deceleration ramps for velocity control.All wiring associated with this card connects to its PWB connectors as shown. Some related signals may be assigned to the intelligent I/O terminals, as described in Chapter 4. For more information, refer to the SJ-FB manual.

The SJ-DG Digital Input Card installs in the inverter's expansion bay. This card accepts up to eight digital input signals, in addition to the intelligent inputs on the inverter's control terminal connector. All wiring associated with card connects to its PWB connectors as shown.


SJ-FB Encoder Feedback Card


SJ-DG Digital Input Card

The SJ-DN DeviceNet Interface Card (not shown) installs in the inverter's expansion bay. It connects directly to a DeviceNet network. Inverter parameters P044 to P049 configure the card. Only one DeviceNet card may be installed in an inverter. For more information, please refer to the DeviceNet Expansion Card Instruction Manual.

## Dynamic Braking

Introduction
The purpose of dynamic braking is to improve the ability of the inverter to stop (decelerate) the motor and load. This becomes necessary when an application has some or all of the following characteristics:

- High load inertia compared to the available motor torque
- The application requires frequent or sudden changes in speed
- System losses are not great enough to slow the motor as needed

When the inverter reduces its output frequency to decelerate the load, the motor can temporarily become a generator. This occurs when the motor rotation frequency is higher than the inverter output frequency. This condition can cause the inverter DC bus voltage to rise, resulting in an over-voltage trip. In many applications, the over-voltage condition serves as a warning signal that we have exceeded the deceleration capabilities of the system. SJ7002 inverters rated $15 \mathrm{hp}(11 \mathrm{~kW})$ and below have a built-in braking unit that sends the regenerative energy from the motor during deceleration to the optional braking resistor(s). External braking units may also be used if higher braking torques and/or duty cycles are required. The dynamic braking resistor serves as a load, developing heat to stop the motor just as brakes on an automobile develop heat during braking.
The braking resistor is the main component of a braking resistor assembly, which includes an integral thermal fuse and thermally activated alarm relay for safety. However, be careful to avoid overheating its resistor. The thermal fuse and thermal relay are safeguards for extreme conditions, but the inverter can maintain braking usage in a safe zone.


Braking Resistor


## Dynamic Braking Usage Ratio

The inverter controls braking via a duty cycle method (percent of the time braking is ON versus total time). Parameter B090 sets the dynamic braking usage ratio. In the graph to the right, the example shows three uses of dynamic braking in a 100 -second period. The inverter calculates the average percentage usage in that time (duty cycle \%). The percentage of usage is proportional to the heat dissipated. If the duty cycle is greater than the B090 parameter setting, the inverter


B90 Duty cycle $=\frac{(\mathrm{t} 1+\mathrm{t} 2+\mathrm{t} 3+\ldots)}{100 \text { seconds }} \times 100$ enters the Trip Mode and turns OFF the frequency output.
Please note the following (for SJ700-055xFU2 to SJ700-220xFU2).

- When B090 is set for 0\%, dynamic braking is not performed.
- When the duty cycle value exceeds the limit set by B090, the inverter will trip (ending the dynamic braking).
- The cable from the external resistor to the inverter must not exceed 5 m ( 16 ft .) length.
- The wires from the DB resistor to the inverter must not be bundled together with control or signal wires.

NOTE: Inverters rated 40 hp ( $30 \mathrm{~kW} \mathrm{)} \mathrm{and} \mathrm{above} \mathrm{(SJ700-300xFU2} \mathrm{and} \mathrm{larger} \mathrm{models)} \mathrm{do} \mathrm{not}$ include an internal braking unit. Parameters B090, B095, and B096 do not apply to these models.

Dynamic Braking Selection Tables

The SJ7002 Series 200V and 400V class inverter models in the $1 / 2$ to 30 HP range have internal braking units. Additional stopping torque is available by adding external resistors. The required braking torque depends on your particular application. Other tables in this section will help you choose the proper resistor.

| 1/2 to 30 HP (0.4 to 22 kW ) |  |  | Without External Resistor |  | Using Optional External Resistor |  | Performance @ Minimum Resistance |  | Minimum <br> Resistance <br> @ 100\% <br> Braking <br> Duty <br> Cycle, <br> Ohms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage Class | Model Number | Motor HP | Braking Unit | Braking Torque <br> @ 60Hz, <br> \% | External Resistance, Ohms | Braking Torque @ 60Hz, \% | Minimum <br> Resistance, Ohms | Max. Braking Duty Cycle, \% |  |
| 200 V | SJ700-004LFUF2 | 0.5 | Built-in | 20 | 48 | 150 | 48 | 10 | 150 |
|  | SJ700-007LFUF2 | 1 | Built-in | 20 | 48 | 150 | 48 | 10 | 150 |
|  | SJ700-015LFUF2 | 2 | Built-in | 20 | 32 | 150 | 32 | 10 | 110 |
|  | SJ700-022LFUF2 | 3 | Built-in | 20 | 32 | 150 | 32 | 10 | 110 |
|  | SJ700-037LFUF2 | 5 | Built-in | 20 | 32 | 110 | 32 | 10 | 110 |
|  | SJ700-055LFUF2 | 7.5 | Built-in | 20 | 16 | 140 | 16 | 10 | 50 |
|  | SJ700-075LFUF2 | 10 | Built-in | 20 | 10 | 150 | 10 | 10 | 50 |
|  | SJ700-110LFUF2 | 15 | Built-in | 10 | 10 | 110 | 10 | 10 | 50 |
|  | SJ700-150LFUF2 | 20 | Built-in | 10 | 7.5 | 110 | 7.5 | 10 | 35 |
|  | SJ700-185LFU2 | 25 | Built-in | 10 | 7.5 | 90 | 7.5 | 10 | 35 |
|  | SJ700-220LFU2 | 30 | Built-in | 10 | 5 | 110 | 5 | 10 | 35 |
| 400 V | $\begin{aligned} & \text { SJ700-007HFUF2 } \\ & \text { SJ700-007HFEF2 } \end{aligned}$ | 1 | Built-in | 20 | 100 | 150 | 70 | 10 | 300 |
|  | SJ700-015HFUF2 <br> SJ700-015HFEF2 | 2 | Built-in | 20 | 100 | 150 | 70 | 10 | 300 |
|  | $\begin{aligned} & \text { SJ700-022HFUF2 } \\ & \text { SJ700-022HFEF2 } \end{aligned}$ | 3 | Built-in | 20 | 70 | 150 | 70 | 10 | 300 |
|  | $\begin{aligned} & \hline \text { SJ700-040HFUF2 } \\ & \text { SJ700-040HFEF2 } \end{aligned}$ | 5 | Built-in | 20 | 70 | 150 | 70 | 10 | 200 |
|  | SJ700-055HFUF2 <br> SJ700-055HFEF2 | 7.5 | Built-in | 20 | 70 | 130 | 70 | 10 | 200 |
|  | $\begin{aligned} & \text { SJ700-075HFUF2 } \\ & \text { SJ700-075HFEF2 } \end{aligned}$ | 10 | Built-in | 20 | 70 | 150 | 35 | 10 | 150 |
|  | $\begin{aligned} & \hline \text { SJ700-110HFUF2 } \\ & \text { SJ700-110HFEF2 } \end{aligned}$ | 15 | Built-in | 10 | 50 | 130 | 35 | 10 | 150 |
|  | $\begin{aligned} & \text { SJ700-150HFUF2 } \\ & \text { SJ700-150HFEF2 } \end{aligned}$ | 20 | Built-in | 10 | 35 | 140 | 24 | 10 | 100 |
|  | SJ700-185HFU2/E | 25 | Built-in | 10 | 35 | 140 | 24 | 10 | 100 |
|  | SJ700-220HFU2/E | 30 | Built-in | 10 | 35 | 110 | 20 | 10 | 100 |

NOTE: For inverters larger than $30 \mathrm{HP}(22 \mathrm{~kW})$, an external braking unit will be required. Contact your distributor or Hitachi for assistance.

## Troubleshooting and Maintenance

In This Chapter.... page

- Troubleshooting ..... 2
- Monitoring Trip Events, History, \& Conditions ..... 5
- Restoring Factory Default Settings ..... 16
- Maintenance and Inspection ..... 17
- Warranty ..... $\underline{29}$


## Troubleshooting

Safety Messages Please read the following safety messages before troubleshooting or performing maintenance on the inverter and motor system.

WARNING: Wait at least ten (10) minutes after turning OFF the input power supply before performing maintenance or an inspection. Otherwise, there is the danger of electric shock.

WARNING: Make sure that only qualified personnel will perform maintenance, inspection, and part replacement. Before starting to work, remove any metallic objects from your person (wristwatch, bracelet, etc.). Be sure to use tools with insulated handles. Otherwise, there is a danger of electric shock and/or injury to personnel.


WARNING: Never remove connectors by pulling on its wire leads (wires for cooling fan and logic P.C. board). Otherwise, there is danger of fire due to wire breakage and/or injury to personnel.

General Precautions and Notes

- Always keep the unit clean so that dust or other foreign matter does not enter the inverter.
- Take special care to avoid breaking wires or making connection mistakes.
- Firmly connect terminals and connectors.
- Keep electronic equipment away from moisture and oil. Dust, steel filings and other foreign matter can damage the inverter, causing unexpected accidents, so take special care.
Inspection Items This chapter provides instructions or checklists for these inspection items:
- Daily inspection
- Periodic inspection (approximately once a year)
- Insulation resistance test

Troubleshooting The table below lists typical symptoms and the corresponding solution(s).
Tips

| Symptom/condition |  | Probable Cause | Solution |
| :---: | :---: | :---: | :---: |
| The motor will not run. | The inverter outputs U, V, W are not supplying voltage. | - Is the frequency command source A001 parameter setting correct? <br> - Is the Run command source A002 parameter setting correct? | - Make sure the parameter setting A001 is correct. <br> - Make sure the parameter setting A002 is correct. |
|  |  | - Is power being supplied to terminals [R], [S], and [T] ([L1], [L2], and [L3])? If so, the POWER lamp should be ON. | - Check terminals [R], [S], and [T] ([L1], [L2], and [L3]), then [U], [V], and [W] ([T1], [T2], and [T3]). <br> - Turn ON the power supply or check fuses. |
|  |  | - Is there an error code E--.displayed? | - Press the FUNC. key and determine the error type. Eliminate the error cause, then clear the error (Reset). |
|  |  | - Are the signals to the intelligent input terminals correct? <br> - Is the Run Command active? <br> - Is the [FW] terminal (or [RV]) connected to P24 (via switch, etc.) | - Verify the terminal functions for C001 - C008 are correct. <br> - Turn ON Run command enable. <br> - Supply 24 V to $[\mathrm{FW}]$ or $[\mathrm{RV}]$ terminal, if configured. |
|  |  | - Has the frequency setting for F001 been set greater than zero? <br> - Are the control circuit terminals [H], [O], and [L] connected to the potentiometer? | - Set the parameter for F001 to a safe, non-zero value. <br> - If the potentiometer is the frequency setting source, verify voltage at $[\mathrm{O}]>0 \mathrm{~V}$. |
|  |  | - Is the RS (reset) function or FRS (freerun stop) function ON? | - Turn OFF the command(s). |
|  | Inverter outputs U, V, W are supplying voltage. | - Is the motor load too heavy? | - Reduce load or test the motor independently of the load. |
| The direction of the motor is reversed. |  | - Are the connections of output terminals [U/T1], [V/T2], and [W/T3] correct? <br> - Is the phase sequence of the motor forward or reverse with respect to [U/T1],[V/T2], and [W/T3]? | - Make connections according to the phase sequence of the motor. In general: $\mathrm{FWD}=\mathrm{U}-\mathrm{V}-\mathrm{W} \text {, and REV=U-W-V. }$ |
|  |  | - Are the control terminals [FW] and [RV] wired correctly? <br> - Is parameter F004 properly set? | - Use terminal [FW] for forward, and [RV] for reverse. <br> - Set motor direction in F004. |


| Symptom/condition | Probable Cause | Solution |
| :---: | :--- | :--- |

## Monitoring Trip Events, History, \& Conditions

Fault Detection and Clearing

## Error Status Codes

The microprocessor in the inverter detects a variety of fault conditions and captures the event, recording it in a history table. The inverter output turns OFF, or "trips" similar to the way a circuit breaker trips due to an over-current condition.
Most faults occur when the motor is running (refer to the diagram to the right). However, the inverter could have an internal fault and trip in Stop Mode. In either case, you can clear the fault by pressing
 the Stop/Reset key. Additionally, you can clear the inverter's cumulative trip history by performing the procedure "Restoring Factory Default Settings" on page 6-16 (setting B_84=00 will clear the trip history but leave inverter settings intact).

The conditions at the time of an error provide important clues to help you understand the cause. The SJ7002 inverter displays a "status at trip point" digit to the right of the decimal point for some error codes. For example, E07.2 means Error 7 occurred and the inverter status was condition \# " 2 " when the error occurred.

| Status <br> Codes | Inverter Status | Status <br> Codes | Inverter Status |
| :--- | :--- | :--- | :--- |
| ---.0 | Reset | ---.5 | Run Command active with 0 Hz <br> speed reference |
| ---.1 | Stop | ---.6 | Starting |
| ---.2 | Deceleration | ---.7 | DC braking |
| ---.3 | Constant speed | ---.8 | Overload restriction |
| ---.4 | Acceleration | ---.9 | SON or FOC operation in <br> progress |

Error Codes
An error code will appear on the display automatically when a fault causes the inverter to trip. The following table lists the cause associated with the error.

| OPE/SRW Display | Name | Description |  | Troubleshooting and Corrective Action |
| :---: | :---: | :---: | :---: | :---: |
| E0 1. | Over-current protection | If the motor is constrained or suddenly accelerated or decelerated, a high current will flow in the inverter and the inverter may fail. To avoid this problem, the inverter shuts off its output and displays the error code shown on the left when it detects a current higher than a specified level. This protective function uses a DC current detector (CT) to detect over-current. When a current as high as about $220 \%$ of the inverter's rated output current is detected, the protective circuit operates and the inverter trips. | During constant speed operation | - Check whether the load has fluctuated sharply. <br> - Check for the short circuit of output connections (check the output cables). <br> - Check for a ground fault (check the output cables and motor). |
| OC.Drive |  |  |  |  |
| E02.- | Over-current protection |  | During deceleration | - Check whether the inverter has decelerated the motor quickly increase the deceleration time). |
| OC.Decel |  |  |  |  |
| E03.- | Over-current protection |  | During acceleration | - Check whether the inverter has accelerated the motor quickly (increase the acceleration time). <br> - Check whether the motor has been locked (check the motor and wiring). <br> - Check whether the torque boost current has been set too high (reduce the boost current). |
| OC.Accel |  |  |  |  |
| E04.- | Over-current protection |  | Other conditions | - Check whether the DC braking force is too high (reduce the braking force). <br> - Check whether the current detector (CT) is normal (replace or repair the CT). |
| Over.C |  |  |  |  |
| E05.- | Overload protection (*1) (*4) | This protective function monitors the inverter output current, and shuts off the inverter output and displays the error code shown on the left when the internal electronic thermal protection circuit detects a motor overload. If the error occurs, the inverter will trip according to the setting of the electronic thermal function. |  | - Check whether the motor load is too high. (reduce the load factor). <br> - Check whether the thermal level is appropriate (adjust the level appropriately). <br> Note: The electronic thermal protection is easily triggered when the output frequency is 5 Hz or less. If the moment of inertia of the load is large, this protective function may operate when the inverter accelerates the motor and the acceleration may be disabled. If this problem occurs, increase the torque boost current or adjust other settings as needed. |
| OL.BRD |  |  |  |  |  |
| E06.- | Braking resistor overload protection | When the BRD operation rate exceeds the setting of B090, this protective function shuts off the inverter output and displays the error code shown on the left. |  | - Check whether the inverter has decreased the motor quickly (increase the deceleration time). <br> - Check whether the operation cycle is too short (prolong the operation cycle) <br> - Check whether the set BRD operation rate is too low (adjust the setting to an appropriate level). <br> Note: Confirm the maximum allowable capacity of the resistor. |
| OL.BRD |  |  |  |  |  |


| OPE/SRW Display | Name | Description | Troubleshooting and Corrective Action |
| :---: | :---: | :---: | :---: |
| E07.- | Over-voltage protection | If the DC voltage across the P and N terminals rises too high, an inverter failure may result. To avoid this problem, this protective function shuts off the inverter output and displays the error code shown on the left when the DC voltage across the P and N terminals exceeds a specified level because of an increase in the energy regenerated by the motor or the input voltage (during operation). The inverter will trip if the DC voltage across the P and N terminals exceeds about 400 VDC (in case of the 200 V class models) or about 800 VDC (in case of the 400 V class models). | - Check whether the inverter has decreased the motor quickly (increase the deceleration time). <br> - Check for a ground fault (check the output cables and motor). <br> - Check whether the motor has been rotated by the action of the load (reduce the regenerative energy). |
| Over.V |  |  |  |
| E08.- | EEPROM <br> error $(* 2)(* 3)$ | When an internal-EEPROM is caused by external noise or an abnormal temperature rise, the inverter shuts off its output and displays the error code shown on the left. Note: An EEPROM error may result in a CPU error. | - Check for the noise sources located near the inverter (remove noise sources). <br> - Check whether the cooling efficiency has deteriorated (check the heat sink for clogging and clean it). <br> - Check the cooling fan (replace if needed). |
| EEPROM |  |  |  |
| E09.- | Under-voltage | If the inverter input voltage drops, the control circuit of the inverter cannot function normally. Therefore, the inverter shuts off its output when the input voltage falls below a specified level. The inverter will trip if the DC voltage across the P and N terminals exceeds about 175 VDC (in case of the 200 V class models) or about 345 VDC (in case of the 400 V class models). | - Check whether the power supply voltage has dropped (check the power supply). <br> - Check whether the power supply capacity is sufficient (check the power supply). <br> - Check whether the thyristor has been damaged (check the thyristor). |
| Under.V |  |  |  |
| E 10.- | CT error | If an error occurs in the internal current detector (CT), the inverter will shut off its output and display the error code shown on the left. The inverter will trip when the CT outputs about 0.6 V or more at power-on. | - Check whether the inverter has failed (repair the inverter). |
| CT |  |  |  |

Note 1: The inverter will not accept any reset command within about 90 seconds after tripping (i.e., after the protective function operates). Be sure to turn OFF the input power supply after waiting two minutes for cooling.
Note 2: The inverter will not accept any reset command after an EEPROM error occurs with error code displayed. Turn off the inverter power once. If error code E08 is displayed when the inverter power is turned on subsequently, the internal memory device may have failed or parameters may have not been stored correctly. In such cases, initialize the inverter, and then reset the parameters.
Note 3: The inverter will not accept reset commands input via the RS terminal or entered by the STOP/RESET key. Therefore, turn off the inverter power.
Note 4: Be sure to reduce the inverter's output current and the motor load before restarting after overload protection (E05). If the continuous reset/restart operations for error E05 could cause damage to the inverter.

NOTE: If an EEPROM error E08 occurs, be sure to confirm the parameter data values are still correct.

| OPE / SRW Display | Name | Description | Troubleshooting and Corrective Action |
| :---: | :---: | :---: | :---: |
| E $11 .-$ CPU | CPU error (*5) | If the internal CPU malfunctions or an error occurs in it, the inverter will shut OFF its output and display the error code shown on the left. <br> Note: Reading abnormal data from the EEPROM may result in a CPU error. | - Check for the noise sources located near the inverter (remove noise sources). <br> - Check whether the inverter has failed (repair the inverter). |
| E 12.- EXTERNAL | External trip | If an error occurs in the external equipment or device connected to the inverter, the inverter will latch the error signal and shut off its output. (This protective function is active when the external trip function is enabled.) | - If the inverter's external trip function is enabled, check whether an error has occurred in external equipment (clear the error in the external equipment). |
| E 13.- UsP | USP error | A USP error is indicated when the inverter power is turned on with an input operation signal remaining in the inverter. (This protective function is active when the USP function is enabled.) | - If the USP function has been enabled, check whether the inverter power has been turned on with an input operation signal remaining in the inverter (reset the operation command, and then turn ON the inverter power). |
| E 14.- GND.Flt | Ground fault protection (*5) | When the inverter power is turned ON , this protective function detects the ground fault between the inverter output circuit and the motor to protect the inverter. (This function does not operate when a residual voltage remains in the motor.) | - Check for the ground fault (check the output cables and motor). <br> - Check the inverter itself for abnormality (remove the output cables from the inverter, and then check the inverter). <br> - Check the main circuit for abnormality (use testing methods described in this chapter and repair the inverter). |
| E 15.- OV.SRC | Input overvoltage protection | This protective function determines an error if the input voltage is kept above the specification level for 100 seconds while the inverter is stopped. The inverter will trip if the DC voltage of the main circuit is kept above about 390 VDC (in case of the 200 V class models) or about 780 VDC (in case of the 400 V class models). | - Check whether the input voltage is high while the inverter is stopped (lower the input voltage, suppress the power voltage fluctuation, or connect an AC reactor between the power supply and the inverter input.) |
| E 16.- Inst.P-F | Instantaneous power failure protection | If an instantaneous power failure lasts 15 ms or more, the inverter will shut off its output. When the power failure duration is long, the inverter assumes a normal power-OFF. If a restart mode has been selected and an operation command remains in the inverter, the inverter will restart after the power is recovered. | - Check whether the power supply voltage has dropped (recover the power supply). <br> - Check the MCB and magnetic contactors for poor contacts (replace the MCB and the magnetic contactor). |
| E20.- OH.stFAN | Temperature error due to low coolingfan speed | The inverter will display the error code shown on the left if the lowering of cooling fan speed is detected at the occurrence of the temperature error described below. | - Check whether the cooling efficiency has been lowered (replace the cooling fan). <br> - Check the heat sink for clogging (clean the heat sink). |
| E2 1.- OH.fin | Temperature error | If the main circuit temperature rises because of a high ambient temperature or for other reasons, the inverter will shut OFF its output. | - Check whether the inverter is installed vertically (check the installation.) <br> - Check whether the ambient temperature is high (lower the ambient temperature). |

Note 5: The inverter will not accept reset commands input via the [RS] terminal or entered by the STOP/RESET key. Therefore, turn off the inverter power.

| OPE / SRW Display | Name | Description | Troubleshooting and Corrective Action |
| :---: | :---: | :---: | :---: |
| E23.- | Gate array communication error | If an error occurs in the communication between the internal CPU and gate array, the inverter will trip. | - Check for the noise sources located near the inverter (remove noise sources). <br> - Check whether the communication cable has been disconnected (check the connectors). |
| GA.COM |  |  |  |
| E24 | Phase loss input protection | When the phase loss input protection has been enabled $(\mathrm{B} 006=01)$, the inverter will trip to avoid damage if an phase loss input is detected. The inverter trips when the phase loss input continues for about 1 second or more. | - Check for the phase loss power input. (check the power supply input wiring). <br> - Check the MCB and magnetic contactors for poor contacts (replace the MCB and magnetic contactors). |
| PH.fail |  |  |  |
| E2 | Main circuit error (*6) | The inverter will trip if the gate array cannot confirm the ON/OFF state of IGBT because of a malfunction due to noise, short or damage to the main circuit element. | - Check for the noise sources located near the inverter (remove noise sources.) <br> - Check the main circuit element for damage. Check the output circuit for a short circuit (check the IGBT). <br> - Check the inverter for abnormality (repair the inverter). |
| Main.Cir |  |  |  |
| E30.- | IGBT error(*7) | If instantaneous over-current occurs, the main circuit element temperature is abnormal, or the main circuit element drive power drops, the inverter will turn OFF its output to protect the main circuit element. (After tripping because of this protective function, the inverter cannot retry the operation.) | - Check the output circuit for a short circuit (check the output cables). <br> - Check for the ground fault (check the output cables and motor). <br> - Check the main circuit element for damage (check the IGBT). <br> - Check the heat sink for clogging (clean the heat sink). |
| IGBT |  |  |  |
| E35.- | Thermistor error | The inverter monitors the resistance of the thermistor (in the motor) connected to the inverter's [TH] terminal, and will turn OFF the inverter output if the motor temperature rises. | - Check whether the motor temperature is high (check the motor temperature). <br> - Check whether the internal thermistor of the motor has been damaged (check the thermistor). <br> - Check whether noise has been mixed in the thermistor signal (separate the thermistor wiring from other wirings). |
| TH |  |  |  |
| E36. | Braking error | When " 01 " has been specified for B120 Brake Control Enable, the inverter will trip if it cannot receive the braking confirmation signal within B124 Brake Wait Time for Confirmation after the output of the brake release signal. | - Check whether the brake has been turned on and off or not (check the brake). <br> - Check whether the wait time (B124) is too short (increase the wait time B124). <br> - Check whether the braking confirmation signal has been input (check the wiring). |
| BRAKE |  |  |  |
| E37.- | Emergency stop (*8) | If the EMR signal (on three terminals) is turned ON when the slide switch (SW1) on the logic board is set to ON, the inverter hardware will turn OFF the inverter output and display the error code shown on the left. The malfunction is due to incoming noise when EMR terminal is not ON. | - Check whether an error has occurred in the external equipment since the emergency stop function was enabled. (recover the external equipment from the error.) <br> - Check for the noise sources located near the inverter (remove noise sources). |
| EMR |  |  |  |
| E38.- | Low-speed overload protection | If overload occurs during the motor operation at a very low speed at 0.2 Hz or less, the electronic thermal protection circuit in the inverter will detect the overload and shut off the inverter output (2nd electronic thermal control). <br> Note: A high frequency may be recorded as the error history data. | - Check whether the motor load is too high (reduce the load factor). |
| OL-LowSP |  |  |  |


| OPE/SRW Display | Name | Description | Troubleshooting and Corrective Action |
| :---: | :---: | :---: | :---: |
| E41.- | ModBus communication error | If time-out occurs because of line disconnection during the communication in ModBus-RTU mode, the inverter will display the error code shown on the left. (The inverter will trip according to the setting of C076.) | - Check whether the communication speed setting is correct. <br> - Check whether the wiring distance is appropriate (check the connections). |
| NET.ERR |  |  |  |
| $\begin{aligned} & \text { E60.- } \\ & \text { to } \\ & \text { E69.- } \end{aligned}$ | Option 1 error | The inverter detects errors in the option board mounted in the optional slot 1 . For details, refer to the instruction manual for the mounted option board. | - Check whether the option board is mounted correctly (check the board mounting). <br> - Check whether the option board is used correctly (refer to the instruction manual for the option board SJ-FB, SJ-DG, or SJ-DN). |
| OP1-0 OP1-9 |  |  |  |

Note 6: The inverter will not accept reset commands input via the RS terminal or entered by the STOP/RESET key. Therefore, turn off the inverter power.
Note 7: The inverter applied for 004 to $110 \mathrm{~L} / \mathrm{H}$ will not accept reset commands input via the RS terminal or entered by the STOP/RESET key. Therefore, turn off the inverter power.
Note 8: The inverter will not accept the reset command entered from the digital operator. Therefore, reset the inverter by turning on the RS terminal.

NOTE: If an EEPROM error (E08) occurs, be sure to confirm the parameter data values are still correct.

## Expansion Card

 Error CodesThe inverter monitors the operation of the expansion cards (optional) that may be installed in the expansion bay.
On the inverter's digital operator, error codes in the E60 range refer to the upper card position. Error codes in the E70 range refer to the lower card position. For the remote operator display, error codes are in the OP1 or OP2 ranges, respectively. If an error occurs, the inverter trips (displays the corresponding error code and turns OFF the motor output).
Encoder Input Card - Use the following table to diagnose errors caused by an
 encoder input expansion card. Each error will cause the inverter to trip, turning OFF its output and displaying an error code.

| Encoder Input Expansion Card Errors |  |  |
| :--- | :--- | :--- |
| Error Code: OPE / SRW | Name | Probable Cause(s) |
| E60.- E70.- | Encoder disconnect | Encoder wiring to the expansion card is <br> disconnected |
|  |  | The encoder is faulty |
| OP1-0 OP2-0 | The encoder type is not correct (no line <br> driver output, etc.) |  |
| E6 1- E7 1-- | Excessive speed | The motor speed increased to the <br> maximum frequency (A004) times the <br> over-speed error detection level (P026) |
| OP1-1 OP2-1 | Positioning error | While in position control mode the <br> position error (command minus actual) <br> reached 1,000,000 pulses or more |
| E62-- E72-- | Position control <br> range trip | While in absolute position control mode, <br> the actual position exceeded the forward <br> (P072) or reverse (P073) position range <br> value |
| OP1-2 OP2-2 |  | The SJ-FB expansion card is not mounted <br> properly or the card is faulty |
| E63.- E73.- | SJ-FB connection <br> error |  |

If an encoder expansion card does not operate normally, use the following table to check the DIP switch settings on the card.

| DIP Switch | Switch <br> Number | Setting |
| :---: | :---: | :--- |
| SWENC | 1 | ON setting enables encoder disconnect function for loss of A <br> or B channel |
|  | 2 | ON setting enables encoder disconnect function for loss of Z <br> channel |
|  | 1 | ON setting connects the 150 15 termination resistor across <br> terminals [SAP] and [SAN] |
|  | 2 | ON setting connects the 150 $\Omega$ termination resistor across <br> terminals [SBP] and [SBP] |

Digital Input Card - Use the following table to diagnose errors caused by a digital input expansion card. Each error will cause the inverter to trip, turning OFF its output and displaying an error code.

## Digital Input Expansion Card Errors

| Error Code: OPE / SRW | Name | Probable Cause(s) |
| :--- | :--- | :--- |
| E60- E70.- | Digital input <br> expansion card error | A communications time-out between the <br> inverter and the digital input card has <br> occurred |
| OP1-0 OP2-0 |  |  |

The input mode is determined by a combination of DIP switch and rotary switch settings. If the expansion card does not operate normally, use the following table to check the DIP switch and rotary switch settings. The check marks indicate input modes specified by switch settings. For more details, refer to the expansion card instruction manual.

| DIP Switch |  | Rotary Switch | Frequency Setting, Hz |  |  |  | Accel / Decel Time, Seconds |  |  | Torque limit Setting | Position Setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | Code | 0.01 | 0.1 | 1 | Rate | 0.01 | 0.1 | 1 | 1\% | 1 pulse |
| OFF: BIN (binary input)/ ON: BCD (binary coded decimal input) | OFF: PAC (batch input mode) | 0 |  |  |  |  |  |  |  |  |  |
|  |  | 1 |  |  |  |  |  |  |  |  |  |
|  |  | 2 |  |  |  |  |  |  |  |  |  |
|  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  | 4 |  |  |  |  |  |  |  | $\checkmark$ |  |
|  |  | 5 |  |  |  |  |  |  |  |  |  |
|  |  | 6 |  |  |  |  |  |  |  |  | $\checkmark$ |
|  | ON: DIV (divided input mode | 0 | $\checkmark$ |  |  |  | $\checkmark$ |  |  | $\checkmark$ | $\checkmark$ |
|  |  | 1 |  |  |  |  |  | $\checkmark$ |  |  |  |
|  |  | 2 |  |  |  |  |  |  | $\checkmark$ |  |  |
|  |  | 3 |  | $\checkmark$ |  |  | $\checkmark$ |  |  |  |  |
|  |  | 4 |  |  |  |  |  | $\checkmark$ |  |  |  |
|  |  | 5 |  |  |  |  |  |  | $\checkmark$ |  |  |
|  |  | 6 |  |  | $\checkmark$ |  | $\checkmark$ |  |  |  |  |
|  |  | 7 |  |  |  |  |  | $\checkmark$ |  |  |  |
|  |  | 8 |  |  |  |  |  |  | $\checkmark$ |  |  |
|  |  | 9 |  |  |  | $\checkmark$ | $\checkmark$ |  |  |  |  |
|  |  | A |  |  |  |  |  | $\checkmark$ |  |  |  |
|  |  | B |  |  |  |  |  |  | $\checkmark$ |  |  |

DeviceNet Expansion Card - Use the following table to diagnose errors caused by a DeviceNet expansion card. Each error will cause the inverter to trip (according to parameter settings P045 and P048), turning OFF its output and displaying an error code.

| DeviceNet Expansion Card Errors |  |  |
| :---: | :---: | :---: |
| Error Code: OPE / SRW | Name | Probable Cause(s) |
| E60.- E70.- | DeviceNet Communication Error | The communication speed may be incorrect |
| OP1-0 OP2-0 |  | The network wiring length may not be appropriate |
|  |  | A connector is loose (or wire not connected) |
| E6 1.- E7 1.- | Duplicate MAC ID | Two or more devices on the network have the same MAC ID |
| OP1-1 OP2-1 |  |  |
| E62.- E72.- | External trip | Check the Force Fault/Trip bit. Attribute 17 in the Instance 1 of Class 19 may be set to 1 . If so, clear the bit to 0 . |
| OP1-2 OP2-2 |  |  |
| E69.- E79.- | Inverter communication error | The expansion card may not be properly connected to the inverter |
| OP1-9 OP2-9 |  |  |

If the expansion card does not operate normally, use the following diagrams to check the DIP switch settings. For more details, refer to the expansion card instruction manual.


| DeviceNet MAC ID Setting |  |
| :---: | :---: |
| DIP switch example | Description of switch setting |
| MAC ID | $1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}$ |
| $\square$ |  |
|  |  |

Easy Sequence Error Codes

Use the following table to diagnose errors related to Easy Sequence programming. The error code will appear when the related program runs.

| DeviceNet Expansion Card Errors |  |  |
| :---: | :---: | :---: |
| Error Code: OPE / SRW | Name | Probable Cause(s) |
| E43.- | Invalid instruction | A program contains an invalid instruction |
| PRG.CMD |  | The [PRG] terminal was turn ON but a program was not loaded |
| E44.- | Nesting count error | Subroutines with FOR and NEXT instructions are nested more than eight levels |
| PRG.NST |  |  |
| E45.- | Execution error 1 | A FOR (or another) instruction to begin nesting is not found at the jump destination of a GO TO instruction, and the NEXT (or another) instruction to end nesting precedes the beginning of nesting |
| PRG.ERR1 |  | An arithmetic operation resulted in overflow or underflow, or a divide-by-zero was attempted |
|  |  | A CHG PARAM or MON PARAM instruction attempts to: <br> - Reference an undefined parameter <br> - Set a value outside the range for a parameter <br> - Update a parameter that cannot be changed during inverter operation |
| E50.- ... E59.- | User trip event | A TRIP instruction was executed in a program |
| PRG-0 ... PRG-9 |  |  |

Trip History and Inverter Status

We recommend that you first find the cause of the fault before attempting clearing it. When a fault occurs, the inverter stores important performance data at the moment of the fault. To access the data, use the monitor functions (Dxxx) and select D081 for details about the present fault $\left(E_{n}\right)$. The previous five faults are stored in D081 to D086, with $D\left(E_{n-1}\right.$ to $\left.E_{n-5}\right)$. Each error shifts D081-D085 to D082-D086, and writes the new error to D081.

The following Monitor Menu map shows how to access the error codes. When fault(s) exist, you can review their details by first selecting the proper function: D081 is most recent, and D086 is the oldest.


## Restoring Factory Default Settings

You can restore all inverter parameters to the original factory (default) settings for the intended country of use. After initializing the inverter, use the powerup test in Chapter 2 to get the motor running again. To initialize the inverter, follow the steps below.

| No. | Action | Display | Func./Parameter |
| :---: | :---: | :---: | :---: |
| 1 | Use the Func), (4), and (2) keys to navigate to the "B" Group. | b--- | "B" Group selected |
| 2 | Press the Func. key. | 0001 | First "B" parameter selected |
| 3 | Press and hold the $\$$ key until -> | d 104 | Country code for initialization selected |
| 4 | Press the Func. key. | 02 | $\begin{aligned} & 00=\text { Japan, } 01=\text { Europe, } \\ & 02=\text { U.S. } \end{aligned}$ |
| 5 | Confirm the country code is correct. Do not change it unless you are absolutely sure the power input voltage range and frequency match the country code setting. <br> To change the country code, press (4) or (2) to set; STR to store. |  |  |
| 6 | Press the Func. key. | 0085 | Country code for initialization selected |
| 7 | Press the key. | 0084 | Initialization function selected |
| 8 | Press the Func. key. | 00 | $00=$ initialization disabled, clear trip history only |
| 9 | Press the key. | 01 | $01=$ enable initialization |
| 10 | Press the STR key. | 0084 | Initialization now enabled to restore all defaults |
| 11 | Press and hold the 4 and keys together, and immediately press and hold the Func. key. Do not release these keys yet. | b084 | First part of special key sequence, the " $B$ " in the display begins flashing |
| 12 | Holding the keys above, press and hold the 단앙 (STOP) key for 3 sec . | b084 | Entire "B084" display will begin flashing |
| 13 | When the b084 display begins <br>  | $\begin{aligned} & 0 \mathrm{EU} \\ & \text { or } \\ & 0 U S A \end{aligned}$ | Default parameter country code shown during initialization process (left-most character displays alternating pattern) |
| 14 | Release the $\qquad$ (2), and Func. keys together. | d001 | Final part of key sequence, function code for output frequency monitor shown after initialization is complete |

## Maintenance and Inspection

Monthly and
Yearly Inspection
Chart

| Item Inspected |  | Check for... | Inspection Cycle |  | Inspection Method | Criteria |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Month | Year |  |  |
| General | Ambient environment |  | Extreme temperatures \& humidity | $\checkmark$ |  | Thermometer, hygrometer | Ambient temperature between -10 to $50^{\circ} \mathrm{C}$, non-condensing |
|  | Major devices | Abnormal vibration, noise | $\checkmark$ |  | Visual and aural | Stable environment for electronic controls |
|  | Power supply voltage | Voltage tolerance | $\checkmark$ |  | Digital volt meter, measure between inverter terminals [L1], [L2], [L3] | 200V class: <br> 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ <br> 400 V class: <br> 380 to $460 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ |
| Main circuits | Ground Insulation | Adequate resistance |  | $\checkmark$ | Megger test | 500 VDC , reading of 5 M ohms or greater, see next section for test details |
|  | Mounting | No loose screws |  | $\checkmark$ | Torque wrench | M3: $0.5-0.6 \mathrm{Nm}$ M4: $0.98-1.3 \mathrm{Nm}$ M5: $1.5-2.0 \mathrm{Nm}$ |
|  | Components | Overheating |  | $\checkmark$ | Thermal trip events | No trip events |
|  | Housing | Dirt, dust |  | $\checkmark$ | Visual | Vacuum dust and dirt |
|  | Terminal block | Secure connections |  | $\checkmark$ | Visual | No abnormalities |
|  | Smoothing capacitor | Leaking, swelling | $\checkmark$ |  | Visual | No abnormalities |
|  | Relay(s) | Chattering |  | $\checkmark$ | Aural | Single click when switching ON or OFF |
|  | Resistors | Cracks or discoloring |  | $\checkmark$ | Visual | Use Ohm meter to check braking resistors |
| Cooling system | Cooling fan | Noise | $\checkmark$ |  | Power down, manually rotate | Rotation must be smooth |
|  | Heat sink | Dust | $\checkmark$ |  | Visual | Vacuum to clean |
| Control circuit | General | No odor, discoloring, corrosion |  | $\checkmark$ | Visual | No abnormalities |
|  | Capacitor | No leaks or deformation | $\checkmark$ |  | Visual | Undistorted appearance |
| Display | LEDs | Legibility | $\checkmark$ |  | Visual | All LED segments work |


| Item Inspected | Check for... | Inspection <br> Cycle |  | Inspection Method | Criteria |  |
| :--- | :--- | :--- | :---: | :---: | :--- | :--- |
|  |  | Month | Year |  |  |  |
| Motor | General | Vibration | $\boldsymbol{V}$ |  | Visual, touch | Ordinary range |
|  | Unusual odor | $\boldsymbol{V}$ |  | Look for signs of <br> overheating | Normal appearance |  |
|  | Insulation <br> resistance | Isolation <br> boundary <br> fault |  | Disconnect motor <br> from inverter, do <br> megger test on <br> motor | 500V class megger test <br> must pass |  |

Note 1: The life of a capacitor is affected by the ambient temperature. See "Capacitor Life Curve" on page 6-20.
Note 2: The inverter must be cleaned periodically. If dust accumulates on the fan and heat sink, it can cause overheating of the inverter.

## Megger Test



CAUTION: Never test the withstand voltage (HIPOT) on the inverter. The inverter has a surge protector between the main circuit terminals above and the chassis ground.

Spare parts

## Capacitor Life Curve

We recommend that you stock spare parts to reduce down time, including parts listed below:

| Part description | Symbol | Quantity |  | Notes |
| :--- | :---: | :---: | :---: | :--- |
|  |  | Spare |  |  |
| Cooling fan | FAN | $1,2,3 \ldots$ (depends <br> on model) | 1 or 2 | Fan unit at top of housing <br> in all models |
| Auxiliary cooling fan | FAN | 0 or 1... (depends <br> on model) | 0 or 1 | -150Lxx, -185Lxx, and <br> $-220 L x x ~ m o d e l s ~$ |
| Capacitor bank | CB | 1 | 1 | All models |

The DC bus inside the inverter uses a large capacitor as shown in the diagram below. The capacitor handles high voltage and current as it smooths the power for use by the inverter. So, any degradation of the capacitor will affect the performance of the inverter. The capacitor bank in SJ7002 series inverters is replaceable. This section will show you how to replace it in the field.


Capacitor life is reduced in higher ambient temperatures, as the graph below demonstrates. Be sure to keep the ambient temperature at acceptable levels, and perform maintenance inspections on the fan, heat sink, and other components. If the inverter is installed on a cabinet, the ambient temperature is the temperature inside the cabinet.

## Capacitor Life Curve

Ambient temperature, ${ }^{\circ} \mathrm{C}$

## Capacitor Replacement



The DC section of the inverter main circuit uses high-capacity aluminum electrolytic capacitors as smoothing filter components. Since chemical reactions occur inside the capacitors, the service life of these parts depends mainly on the ambient temperature and operating conditions, Capacitors used in a standard operating environment must be replaced after about 10 years. However, each capacitor must me immediately replaced if it fails a visual inspection or if periodic inspections shows the capacity to be $80 \%$ or less of the component rating.

WARNING: The screws that retain the capacitor bank assembly are part of the electrical circuit of the high-voltage internal DC bus. Be sure that all power has been disconnected from the inverter, and that you have waited at least 10 minutes before accessing the terminals or screws. Be sure the charge lamp is extinguished. Otherwise, there is the danger of electrocution to personnel.

CAUTION: Do not operate the inverter unless you have replaced the two screws that connect the capacitor bank assembly to the internal DC bus. Otherwise, damage to the inverter may occur.

## For inverters above 11 kW output with molded plastic housings...

1. Loosen the two screws that secure the lower front panel. Remove the panel from the inverter.
2. Turn OFF power to the inverter and confirm that the Charge Indicator LED is OFF.
3. Remove the wiring entry/exit plate from the inverter.
4. Remove the screws that connect the capacitor unit to the main circuit terminal block.
5. Remove the screws that secure the capacitor mounting plate to the inverter casing.
6. Pull down the capacitor mounting plate.
7. Remove the capacitor unit from the capacitor mounting plate.


To install the new capacitor unit:

1. Place the capacitor unit on the mounting plate.
2. Slide the capacitor mounting plate into the guides in the inverter housing. Push the capacitor unit until the metal plate is flush with the housing.
3. Connect the capacitor unit to the main circuit terminal block by using the two (2) terminal screws.
4. Secure the capacitor mounting plate to the inverter housing by using the screws.
5. Replace the wire/entry plate.
6. Replace the lower front panel cover and secure it with screws.

## For inverters with sheet metal housings...

1. Loosen the two screws that secure the lower front panel. Remove the panel from the inverter.
2. Turn OFF power to the inverter and confirm that the Charge Indicator LED is OFF.
3. Remove the lower screws from terminal block terminals $[\mathrm{P}]$ and $[\mathrm{N}]$.
4. Remove the screws that secure the capacitor mounting plate.
5. Pull down the capacitor mounting plate.
6. Remove the bus bar and resistors. Then remove the capacitor unit from the capacitor mounting plate.


To install the new capacitor unit:

1. Place the capacitor unit on the mounting plate and secure the unit with screws.
2. Mount the bus bar and resistors in the original positions and secure them with screws.
3. Slide the capacitor mounting plate into the inverter housing.
4. Secure the capacitor mounting plate to the inverter housing by using the screws.
5. Install the lower screws in the terminal block terminals $[P]$ and $[N]$.
6. Mount the terminal block cover.

## For inverters 11 kW output and below with molded plastic housings...

The inverters in this category do not have separate capacitor units. It is necessary to replace the main circuit board, accessible by following the steps below.

1. Loosen the two screws that secure the lower front panel. Remove the panel from the inverter.
2. Turn OFF power to the inverter and confirm that the Charge Indicator LED is OFF.
3. Loosen the two screws that secure the upper front panel. Remove the panel from the inverter.
4. Press the tabs inward on each side of the cooling fan unit and lift the unit away from the top of the inverter housing.
5. Disconnect the fan unit wiring on the circuit board at the top of the inverter.
6. Disconnect the ribbon cable that connects the control board and main board.
7. Remove the wiring entry/exit plate and the jumper between terminal $[P]$ and $[P D]$ on the main board.
8. Remove the two (2) screws in the plastic housing, and remove the top half of the housing. Be careful not to damage the plastic tabs at the top corners of the housing.


Fan Assembly Replacement

The SJ7002 Series inverters have field-replaceable fan units. The service life of the cooling fan bearings is approximately 100,000 hours. However, actual results vary with the inverter operating environment. Inverters running continuously usually need fan unit replacement at 10 -year intervals. In addition, fan unit replacement is required immediately if the fan has abnormal sound or vibration. The fan replacement procedure depends according to the model (housing type).

## For inverters with molded plastic housings...

1. Loosen the two screws that secure the lower front panel. Remove the panel from the inverter.
2. Turn OFF power to the inverter and confirm that the Charge Indicator LED is OFF.
3. Loosen the two screws that secure the upper front panel. Remove the panel from the inverter.
4. Press the tabs inward on each side of the cooling fan unit and lift the unit away from the top of the inverter housing.
5. Disconnect the fan unit wiring on the circuit board at the top of the inverter.
6. Remove the defective fan(s) from the cooling fan mounting plate.


To install the new fan(s):

1. Slide the fan(s) into the mounting locations in the mounting plate. To ensure the correct airflow, be sure that the label on each fan faces toward the vent openings (top of inverter).
2. Connect the fan wiring to terminals J 21 or J 22 (depending on the inverter model) on the main circuit board.
3. Put the mounting plate in position on the top of the inverter. Press downward on the fan units until the retention tabs click into place.
4. Replace the upper and lower front panel covers on the inverter, using two (2) screws for each panel.


## For inverters with sheet metal housings...

1. Loosen the screws that secure the lower front panel. Remove the panel from the inverter.
2. Turn OFF power to the inverter and confirm that the Charge Indicator LED is OFF.
3. Loosen the two screws that secure the upper front panel. Remove the panel from the inverter.
4. Remove the screws that secure the fan unit to the top of the inverter.
5. Lift the cooling fan unit away from the top of the inverter housing.
6. Remove the defective fan(s) from the cooling fan mounting plate.


To install the new fan(s):

1. Slide the fan(s) into the mounting locations in the mounting plate. To ensure the correct airflow, be sure that the label on each fan faces toward the vent openings (top of inverter).
2. Connect the fan wiring to terminals $\mathbf{J} 21$, J22, or J23 (depending on the inverter model) on the main circuit board.

3. Put the mounting plate in position on the top of the inverter housing and secure it with screws.

4. Replace the upper and lower front panel covers on the inverter and secure them with screws.

General Inverter Electrical Measurements

The following table specifies how to measure key system electrical parameters. The diagrams on the next page show inverter-motor systems and the location of measurement points for these parameters.

| Parameter | Circuit location of measurement | Measuring instrument | Notes | Reference Value |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltage $\mathrm{E}_{1}$ | $\begin{aligned} & \hline \mathrm{E}_{\mathrm{R}}-\operatorname{across} \mathrm{L} 1 \text { and L2 } \\ & \mathrm{E}_{\mathrm{S}}-\operatorname{across} \mathrm{L} 2 \text { and } \mathrm{L} 3 \\ & \mathrm{E}_{\mathrm{T}}-\operatorname{across} \mathrm{L} 3 \text { and } \mathrm{L} 1 \end{aligned}$ | Moving-coil type voltmeter or rectifier type voltmeter | Fundamental wave effective value | Commercial supply voltage ( 200 V class) $200-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ 400 V class $380-$ $460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |
| Supply current $\mathrm{I}_{1}$ | $\mathrm{I}_{\mathrm{r}}-\mathrm{L} 1, \mathrm{I}_{\mathrm{s}}-\mathrm{L} 2, \mathrm{I}_{\mathrm{t}}-\mathrm{L} 3$ | Moving-coil type ammeter | Total effective value | - |
| Supply power $\mathrm{W}_{1}$ | $\begin{aligned} & \mathrm{W}_{11}-\operatorname{across} \mathrm{L} 1 \text { and L2 } \\ & \mathrm{W}_{12}-\operatorname{across} \mathrm{L} 2 \text { and L3 } \end{aligned}$ | Electronic type wattmeter | Total effective value | - |
| Supply power factor $\mathrm{Pf}_{1}$ | $\mathrm{Pf}_{1}=\frac{}{\sqrt{3}}$ | $\frac{\mathrm{I}_{1}}{} \times 100 \%$ |  | - |
| Output voltage $\mathrm{E}_{0}$ | $\mathrm{E}_{\mathrm{U}}$ - across U and V <br> $\mathrm{E}_{\mathrm{V}}-$ across V and W <br> $\mathrm{E}_{\mathrm{W}}-\operatorname{across} \mathrm{W}$ and U | Rectifier type voltmeter | Total effective value | - |
| Output current $\mathrm{I}_{\text {O }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{U}}-\mathrm{U} \\ & \mathrm{I}_{\mathrm{V}}-\mathrm{V} \\ & \mathrm{I}_{\mathrm{W}}-\mathrm{W} \end{aligned}$ | Moving-coil type ammeter | Total effective value | - |
| Output power $\mathrm{W}_{\mathrm{o}}$ | $\mathrm{W}_{01}$ - across U and V <br> $\mathrm{W}_{02}$ - across V and W | Electronic type wattmeter | Total effective value | - |
| Output power factor $\mathrm{Pf}_{\mathrm{o}}$ | Calculate the output power factor from the output voltage E, output current I, and output power W.$\mathrm{Pf}_{0}=\frac{\mathrm{W}_{0}}{\sqrt{3} \times \mathrm{E}_{0} \times \mathrm{I}_{0}} \times 100 \%$ |  |  | - |

Note 1: Use a meter indicating a fundamental wave effective value for voltage, and meters indicating total effective values for current and power.
Note 2: The inverter output has a distorted waveform, and harmonic frequencies may cause erroneous readings. However, the measuring instruments and methods listed above provide reasonably accurate results.
Note 3: A general-purpose digital volt meter (DVM) is not usually suitable to measure a distorted waveform (not pure sinusoid).

The figure below shows measurement locations for voltage, current, and power measurements listed in the table on the previous page. The voltage to be measured is the fundamental wave effective voltage. The power to be measured is the total effective power.

Three-phase measurement diagram


Inverter Output Voltage Measurement Techniques

Taking voltage measurements around drives equipment requires the right equipment and a safe approach. You are working with high voltages and high-frequency switching waveforms that are not pure sinusoids. Digital voltmeters will not usually produce reliable readings for these waveforms. And, it is usually risky to connect high voltage signals to oscilloscopes. The inverter output semiconductors have some leakage, and no-load measurements produce misleading results. So, we highly recommend using the following circuits to measure voltage for performing the equipment inspections.

Voltage measurement with load


| V class | Diode bridge | Voltmeter |
| :--- | :--- | :--- |
| 200 V class | 600 V 0.01 A min. | 300 V range |
| 400 V class | 1000 V 0.1 A min. | 600 V range |

Voltage measurement without load


| V class | Diode bridge | Voltmeter |
| :--- | :--- | :--- |
| 200 V class | 600 V 0.01 A min. | 300 V range |
| 400 V class | 1000 V 0.1 A min. | 600 V range |

HIGH VOLTAGE: Be careful not to touch wiring or connector terminals when working with the inverters and taking measurements. Be sure to place the measurement circuitry above in an insulated housing before using them.

IGBT Test Method The following procedure will check the power module, including inverter transistors (IGBTs), IPM, diodes, and thyrister until replacement of inverter (1,000,000 start/stop cycles):

1. Disconnect input power to terminals $[R, S$, and $T]$ and motor terminals $[U, V$, and $W]$.
2. Disconnect any wires from terminals $[\mathrm{P}]$ and $[\mathrm{RB}]$ for regenerative braking.
3. Use a Digital Volt Meter (DVM) and set it for 1 ohm resistance range. You can check the status of the charging state of terminals $[R, S, T, U, V, W, R B, P$ and $N]$ of the inverter and the probe of the DVM by measuring the charging state.
Almost infinite ohms $=$ "non-conducting," and 0 to 10 ohms $=$ "conducting."


NOTE: The resistance values for the diodes or the transistors will not be exactly the same, but they will be close. If you find a significance difference, a problem may exist.

NOTE: Before measuring the voltage between $[\mathrm{P}]$ and $[\mathrm{N}]$ with the DC current range, confirm that the smoothing capacitor is discharged fully, then execute the tests.


| Circuit Type |  | DVM Probe |  | Measured Value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | + | - |  |
| Converter | D1 | R | PD | Non-conducting |
|  |  | PD | R | Conducting |
|  | D2 | S | PD | Non-conducting |
|  |  | PD | S | Conducting |
|  | D3 | T | PD | Non-conducting |
|  |  | PD | T | Conducting |
|  | D4 | R | N | Conducting |
|  |  | N | R | Non-conducting |
|  | D5 | S | N | Conducting |
|  |  | N | S | Non-conducting |
|  | D6 | T | N | Conducting |
|  |  | N | T | Non-conducting |
| Inverter | TR1 | U | P | Non-conducting |
|  |  | P | U | Conducting |
|  | TR2 | V | P | Non-conducting |
|  |  | P | V | Conducting |
|  | TR3 | W | P | Non-conducting |
|  |  | P | W | Conducting |
|  | TR4 | U | N | Conducting |
|  |  | N | U | Non-conducting |
|  | TR5 | V | N | Conduct |
|  |  | N | V | Non-conducting |
|  | TR6 | W | N | Conducting |
|  |  | N | W | Non-conducting |


| Circuit Type | DVM Probe |  | Measured Value |  |
| :---: | :---: | :---: | :---: | :---: |
|  | + | - |  |  |
| Dynamic <br> Braking <br> $(0.4 \mathrm{~kW}-11 \mathrm{~kW})$ | TR 7 | RB | P | Non-conducting |
|  | P | RB | Conducting |  |
|  | RB | N | Non-conducting |  |
|  | N | RB | Non-conducting |  |

## Warranty

## Warranty Terms

The warranty period under normal installation and handling conditions shall be two (2) years from the date of manufacture ("DATE" on product nameplate), or one (1) year from the date of installation, whichever occurs first. The warranty shall cover the repair or replacement, at Hitachi's sole discretion, of ONLY the inverter that was installed.

1. Service in the following cases, even within the warranty period, shall be charged to the purchaser:
a. Malfunction or damage caused by mis-operation or modification or improper repair
b. Malfunction or damage caused by a drop after purchase and transportation
c. Malfunction or damage caused by fire, earthquake, flood, lightning, abnormal input voltage, contamination, or other natural disasters
2. When service is required for the product at your work site, all expenses associated with field repair shall be charged to the purchaser.
3. Always keep this manual handy; please do not lose it. Please contact your Hitachi distributor to purchase replacement or additional manuals.

## Glossary and Bibliography


In This Appendix.... ..... page

- Glossary ..... 2
- Bibliography ..... 6


## Glossary

Ambient Temperature

The air temperature in the chamber containing a powered electronic unit. A unit's heat sinks rely on a lower ambient temperature in order to dissipate heat away from sensitive electronics.

Arrival Frequency The arrival frequency refers to the set output frequency of the inverter for the constant speed setting. The arrival frequency feature turns ON an output when the inverter reaches the set constant speed. The inverter has various arrival frequencies and pulsed or latched logic options.

## Auto-tuning

Base Frequency The power input frequency for which an AC induction motor is designed to operate. Most motors will specify a 50 to 60 Hz value. The Hitachi inverters have a programmable base frequency, so you must ensure that parameter matches the attached motor. The term base frequency helps differentiate it from the carrier frequency. See also carrier frequency and frequency setting.

## Braking Resistor

An energy-absorbing resistor that dissipates energy from a decelerating load. Load inertia causes the motor to act as a generator during deceleration. See also four-quadrant operation and dynamic braking.
Break-away
Torque
The ability of a controller to execute a procedure that interacts with a load to determine the proper coefficients to use in the control algorithm. Auto-tuning is a common feature of process controllers with PID loops. Hitachi inverters feature auto-tuning to determine motor parameters for optimal commutation. Auto-tuning is available as a special command from a digital operator panel. See also digital operator panel.

Carrier
Frequency
CE

Choke

DC Braking

DC Link

Deadband

The torque a motor must produce to overcome the static friction of a load in order to start the load moving.

The frequency of the constant, periodic, switching waveform that the inverter modulates to generate the AC output to the motor. See also $P W M$.

A regulatory agency for governing the performance of electronic products in Europe. Drive installations designed to have CE approval must have particular filter(s) installed in the application.

An inductor that is tuned to react at radio frequencies is called a "choke," since it attenuates (chokes) frequencies above a particular threshold. Tuning is often accomplished by using a movable magnetic core. In variable-frequency drive systems, a choke positioned around highcurrent wiring can help attenuate harmful harmonics and protect equipment. See also harmonics.

The inverter DC braking feature stops the AC commutation to the motor, and sends a DC current through the motor windings in order to stop the motor. Also called "DC injection braking," it has little effect at high speed, and is used as the motor is nearing a stop.

The portion of the variable frequency drive between the input rectifiers and the output stages. It delivers smoothed DC power to the control and output stages of the drive.

In a control system, the range of input change for which there is no perceptible change in the output. In PID loops, the error term may have a deadband associated with it. Deadband may or may not be desirable; it depends on the needs of the application.

For Hitachi inverters, "digital operator panel" (DOP) refers first to the operator keypad on the front panel of the inverter. It also includes hand-held remote keypads, which connect to the inverter via a cable. Finally, the DOP Professional is a PC-based software simulation of the keypad devices.

A semiconductor device that has a voltage-current characteristic that allows current to flow only in one direction, with negligible leakage current in the reverse direction. See also rectifier.

1. The percent of time a square wave of fixed frequency is ON (high) versus OFF (low). 2. The ratio of operating time of a motor, braking resistor, etc. to its resting time. This parameter usually is specified in association with the allowable thermal rise for the device.

## Dynamic Braking

Error

EMI
The inverter dynamic braking feature shunts the motor-generated EMF energy into a special braking resistor. The added dissipation (braking torque) is effective at higher speeds, having a reduced effect as the motor nears a stop.

In process control, the error is the difference between the desired value or setpoint (SP) and the actual value of a the process variable (PV). See also process variable and PID Loop.

Electromagnetic Interference - In motor/drive systems, the switching of high currents and voltages creates the possibility of generating radiated electrical noise that may interfere with the operation of nearby sensitive electrical instruments or devices. Certain aspects of an installation, such as long motor lead wire lengths, tend to increase the chance of EMI. Hitachi provides accessory filter components you can install to decrease the level of EMI.

## Four-quadrant operation

Free-run Stop

Frequency
Setting

## Harmonics

## Horsepower

## IGBT

Inertia

Intelligent
Terminal

## Inverter

Referring to a graph of torque versus speed, a four-quadrant drive can turn the motor either forward or reverse, as well as decelerate in either direction (see also reverse torque). A load that has a relatively high inertia and must move in both directions and change directions rapidly requires four-quadrant capability from its drive.

A method of stopping a motor, caused when the inverter simply turns OFF its motor output connections. This may allow the motor and load to coast to a stop, or a mechanical brake may intervene and shorten the deceleration time.

While frequency has a broad meaning in electronics, it typically refers to motor speed for variable-frequency drives (inverters). This is because the output frequency of the inverter is variable, and is proportional to the attained motor speed. For example, a motor with a base frequency of 60 Hz can be speed controlled with an inverter output varying form 0 to 60 Hz . See also base frequency, carrier frequency, and slip.

A harmonic is a whole number multiple of a base of fundamental frequency. The square waves used in inverters produce high-frequency harmonics, even though the main goal is to produce lower-frequency sine waves. These harmonics can be harmful to electronics (including motor windings) and cause radiated energy that interferes with nearby electronic devices. Chokes, line reactors, and filters are sometimes used to suppress the transmission of harmonics in an electrical system. See also choke.

A unit of physical measure to quantify the amount of work done per unit of time. You can directly convert between horsepower and Watts as measurements of power.

Insulated Gate Bipolar Transistor (IGBT) - A semiconductor transistor capable of conducting very large currents when in saturation and capable of withstanding very high voltages when it is OFF. This high-power bipolar transistor is the type used in Hitachi inverters.

The natural resistance of an object to being accelerated or decelerated by an external force. See also momentum.

A configurable input or output logic function on the Hitachi inverters. Each terminal may be assigned one of several functions.

A device that electronically changes DC to AC current through a alternating process of switching the input to the output, inverted and non-inverted. A variable speed drive such as the Hitachi SJ7002 is also called an inverter, since it contains three inverter circuits to generate 3-phase output to the motor.

## Isolation Transformer <br> ```Jogging \\ Operation```

Momentum
Multi-speed
Operation

Motor Load

NEC

Open-collector Outputs

Orientation

Power Factor

PID Loop

PWM

Proportional-Integral-Derivative - a mathematical model used for process control. A process controller maintains a process variable (PV) at a setpoint (SP) by using its PID algorithm to compensate for dynamic conditions and varies its output to drive the PV toward the desired value. See also error.

Process Variable A physical property of a process that is of interest because it affects the quality of the primary task accomplished by the process. For an industrial oven, temperature is the process variable. See also PID Loop and error.
A transformer with $1: 1$ voltage ratio that provides electrical isolation between its primary and secondary windings. These are typically used on the power input side of the device to be protected. An isolation transformer can protect equipment from a ground fault or other malfunction of nearby equipment, as well as attenuate harmful harmonics and transients on the input power.

Usually done manually, a jog command from an operator's panel requests the motor/drive system to run indefinitely in a particular direction, until the machine operator ends the jog operation.

A jump frequency is a point on the inverter output frequency range that you want the inverter to skip around. This feature may be used to avoid a resonant frequency, and you can program up to three jump frequencies in the inverter.

A three-phase inductor generally installed in the AC input circuit of an inverter to minimize harmonics and to limit short-circuit current.

The physical property of a body in motion that causes it to continue to remain in motion. In the case of motors, the rotor and attached load are rotating and possess angular momentum.

The ability of a motor drive to store preset discrete speed levels for the motor, and control motor speed according to the currently selected speed preset. The Hitachi inverters have 16 preset speeds.

In motor terminology, motor load consists of the inertia of the physical mass that is moved by the motor and the related friction from guiding mechanisms. See also inertia.

The National Electric Code is a regulatory document that governs electrical power and device wiring and installation in the United States.

The National Electric Manufacturer's Association. NEMA Codes are a published series of device ratings standards. Industry uses these to evaluate or compare the performance of devices made by various manufacturers to a known standard.

A common logic-type discrete output that uses an NPN transistor that acts as a switch to a power supply common, usually ground. The transistor's collector is open for external connection (not connected internally). Thus, the output sinks external load current to ground.

When using the expansion card SJ-FB with encoder feedback, the orientation feature is available. Also called home search in motion terminology, you can specify a search direction and a stop position. Typically the orientation procedure is necessary after each inverter powerup.

A ratio that expresses a phase difference (timing offset) between current and voltage supplied by a power source to a load. A perfect power factor $=1.0$ (no phase offset). Power factors less than one cause some energy loss in power transmission wiring (source to load).

Pulse-width modulation: A type of AC adjustable frequency drive that accomplishes frequency and voltage control at the output section (inverter) of the drive. The drive output voltage waveform is at a constant amplitude, and by "chopping" the waveform (pulse-width-modulating), the average voltage is controlled. The chopping frequency is sometimes called the carrier frequency.

Thermal Switch

An electromechanical safety device that opens to stop current flow when the temperature at the device reaches a specific temperature threshold. Thermal switches are sometimes installed in the motor in order to protect the windings from heat damage. The inverter can use thermal switch signals to trip (shut down) if the motor overheats. See also trip.

A type of temperature sensor that changes its resistance according to its temperature. The sensing range of thermistors and their ruggedness make them ideal for motor overheating detection. Hitachi inverters have built-in thermistor input circuits, which can detect an overheated motor and shut OFF (trip) the inverter output.

An AC power source with three Hot connections that have phase offsets of 120 degrees is a 3phase power source. Usually, Neutral and Earth Ground wires accompany the three Hot connections. Loads may be configured in a delta or Y configuration. A Y-connected load such as an AC induction motor will be a balanced load; the currents in all the Hot connections are the same. Therefore, the Neutral connection is theoretically zero. This is why inverters that generate 3-phase power for motors do not generally have a Neutral connection to the motor. However, the Earth Ground connection is important for safety reasons, and is provided.

A measure of rotational force. The units of measurement are the product of the distance (radius from shaft center axis) and force (weight) applied at that distance. Units are usually given as pound-feet, ounce-inches, or Newton-meters.

A solid state, three-terminal device that provides amplification of signals and can be used for switching and control. While transistors have a linear operating range, inverters use them as high-powered switches. Recent developments in power semiconductors have produced transistors capable of handling high voltages and currents, all with high reliability. The saturation voltage has been decreasing, resulting in less heat dissipation. Hitachi inverters use state-of-the-art semiconductors to provide high performance and reliability in a compact package. See also IGBT and saturation voltage.

An event that causes the inverter to stop operation is called a "trip" event (as in tripping a circuit breaker). The inverter keeps a history log of trip events. They also require an action to clear.

A measure of the internal power loss of a component, the difference between the power it consumes and what its output delivers. An inverter's watt loss is the input power minus the power delivered to the motor. The watt loss is typically highest when an inverter is delivering its maximum output. Therefore, watt loss is usually specified for a particular output level. Inverter watt loss specifications are important when designing enclosures.

## Bibliography

| Title | Author and Publisher |
| :--- | :--- |
| Variable Speed Drive Fundamentals, 2nd Ed. | Phipps, Clarence A. <br> The Fairmont Press, Inc. / Prentice-Hall, Inc. 1997 <br> ISBN 0-13-636390-3 |
| Electronic Variable Speed Drives | Brumbach, Michael E. <br> Delmar Publishers 1997 <br> ISBN 0-8273-6937-9 |
| Hitachi Inverter Technical Guide Book | Published by Hitachi, Ltd. Japan 1995 <br> Publication SIG-E002 |

## Serial Communications

In This Appendix... ..... page

- Introduction ..... ?
- ASCII Mode Communications ..... 5
- Communications Reference Information ..... 18
- ModBus Mode Communications ..... 21
- ModBus Data Listing ..... 33


## Introduction

SJ7002 inverters have a built-in RS485 serial communications interface. This serial communications function provides a way of controlling from 1 to 32 inverters on a common serial network. SJ7002, SJ300, and L300P inverters all have the same communications prototol. In a typical application, a host computer or controller is the master and each of the inverter(s) is a slave, as shown in the figure below.


The specifications for SJ7002 Series RS485 serial communications are in the following table:

| Item | ASCII Mode | ModBus RTU mode | User-selectable |
| :---: | :---: | :---: | :---: |
| Transmission speed | 2400 / 4800 / 9600 / 19200 bps |  | $\checkmark$ |
| Communication modes | Half duplex (one device transmits at a time) |  | $x$ |
| Synchronization | Start/stop transmission | Asychronous transmission | $x$ |
| Character code | ASCII code | Binary code | $x$ |
| LSB placement | Transmits LSB first |  | $x$ |
| Electrical interface | RS485 differential transceiver |  | $x$ |
| Data bits | 7 or 8 bits | 8 bits | $\checkmark$ |
| Parity | None / even / odd |  | $\checkmark$ |
| Stop bits | 1 or 2 bits |  | $\checkmark$ |
| Start convention | One-way start only by command from host device on network |  | $x$ |
| Wait time for response | 10 to $1,000 \mathrm{~ms}$ | 0 to $1,000 \mathrm{~ms}$ | $\checkmark$ |
| Connection format | Station address numbers from 1 to 32 maximum |  | $\checkmark$ |
| Error check | Overrun, framing, BCC, vertical parity, and longitudinal parity errors | Overrun, framing, CRC-16, and longitudinal parity errors | $x$ |

Serial Connection The serial connector is to the left of the control logic connector as shown below: Diagrams


Each device requires just two connections in parallel for data transmission and reception. Additionally, the device at each physical end of the wiring requires a termination resistor. The SJ7002 has built-in termination resistors that become part of the circuit when you add a jumper as shown. The termination resistor helps to suppress electrical reflections.



TIP: Each slave device on the serial network must have a unique node address, set by parameter C072. If this is a new application, we recommend connecting one new device at a time and checking the communications after each addition.

## Serial Network Parameter Settings

Several parameter settings are necessary to configure serial communications, listed below.

| Function Code | Item | Value | Description |
| :---: | :---: | :---: | :---: |
| C071 | Baud rate | 02 | Loop-back test |
|  |  | 03 | 2400 bps |
|  |  | 04 | 4800 bps |
|  |  | 05 | 9600 bps |
|  |  | 06 | 19200 bps |
| C072 | Node address | $\begin{gathered} 1 \text { to } 32, \\ \text { FF } \end{gathered}$ | 1 to 32 - Node or station address (unique to each inverter or device) FF - Automatic broadcast (to all nodes on transmit, allowed only on certain commands (refer to each command description in this appendix) |
| C073 | Data bits | 07 | 7 bits |
|  |  | 08 | 8 bits |
| C074 | Parity | 00 | none |
|  |  | 01 | Even parity |
|  |  | 02 | Odd parity |
| C075 | Stop bits | 01 | 1 bit |
|  |  | 02 | 2 bits |
| C078 | Wait time | 0 to 1000 | 0 to 1000 ms time that the inverter waits to respond to network master |
| C079 | Communication protocol select | 00 | ASCII |
|  |  | 01 | ModBus RTU |

For inverters on the same network, some settings must match from inverter to inverter. These include: Baud rate, data bits, parity, and stop bits. However, the node address on each inverter must be unique, used only once on the network.

## Communication

 Test ModeUse the communication test mode to check the RS485 serial port hardware on the inverter. Use the following procedure:

1. Disconnect the wiring from the TM2 serial port terminal block on the inverter.
2. Set parameter C071 $=02$ (loopback test)
3. Turn the inverter power OFF and then ON again to initiate the communication test.
4. Check the pass/fail results according to the keypad display.

5. Press the STOP/RESET key on the digital operator keypad (or the Reset button on the copy unit) to switch to the normal setting display.
6. Set parameter C 071 to the desired setting for normal operation.

## ASCII Mode Communications

Introduction to Command List

The network master sends a frame to initiate communications with a slave, as shown in the figure to the right. After the set waiting time (per parameter C078, the inverter responds.

Transmitting


The following table lists the commands (single-character codes) sent to a particular device on the network. Some commands may be broadcast to all devices on the network.

| Command <br> Code | Description | Broadcast to <br> all devices |
| :---: | :--- | :---: |
| 00 | Forward / Reverse / Stop command | $\boldsymbol{\checkmark}$ |
| 01 | Setting of frequency in standard profile | $\boldsymbol{\checkmark}$ |
| 02 | Setting of intelligent terminal state | $\boldsymbol{\checkmark}$ |
| 03 | Read all monitor data (block read) | - |
| 04 | Read inverter status | - |
| 05 | Read trip history | - |
| 06 | Read a single parameter value | - |
| 07 | Write a single parameter value | $\boldsymbol{\checkmark}$ |
| 08 | Set inverter parameters to default values | $\boldsymbol{\checkmark}$ |
| 09 | Verifies that the requested setting can be <br> written to EEPROM. | - |
| 0 A | Writes a parameter value to EEPROM | $\boldsymbol{\checkmark}$ |
| $0 B$ | Requests the recalculation of internal constant | $\boldsymbol{\iota}$ |

NOTE: Use of command 08 - set inverter parameters to default values first requires setting the initialization mode parameter B084 to 01 (initializes parameters only) or 02 (initializes parameters and clears the trip history).

Command - 00
The 00 command controls the Forward, Reverse, and Stop mode of the inverter. You must set parameter A002=03 in order for serial communications control of the inverter to apply.
The frame format of command 00 follows the timing diagram and specification table.

Frame format


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32, and FF (broadcast to all <br> nodes) |
| Command | Transmission command | 2 bytes | 00 |
| Data | Transmission data | 1 byte | 00 = Stop command <br> $01=$ Forward command <br> $02=$ Reverse command |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The example below shows a transmission to the inverter at address Node 1 to rotate the motor in the forward direction.

$$
(\mathrm{STX})|01| 00|1|(\mathrm{BCC})|[\mathrm{CR}] \xrightarrow{\text { to ASCII }} 02| 3031|3030| 31|3330| 0 \mathrm{D}
$$

Command - 01 The 01 command sets the output frequency for the standard profile. You must set parameter A002=03 in order for serial communications control of the inverter to apply.

The frame format of command 01 follows the timing diagram and specification table.

Frame format


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32, and FF (broadcast to all <br> nodes) |
| Command | Transmission command | 2 bytes | 01 |
| Data | Transmission data | 6 bytes | ASCII code for ten times the <br> frequency (accommodates two <br> decimal places) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The example below shows a transmission to the inverter at address Node 1 to set the output frequency for 5 Hz . We use a value of 500 in ASCII to represent 5.00 Hz .

$$
\xrightarrow{\left.\begin{array}{c}
(S T X)|01| 01|000500|(B C C) \mid[C R] \\
\text { to ASCII }
\end{array} 02|3031| 3031|303030353030| 3035 \right\rvert\, 0 D}
$$

When using the data as the feedback (process variable) for PID control, set the most significant byte to ASCII " 1. ." The following example transmits the data " $5 \%$."

$$
\begin{aligned}
& \text { (STX) | } 01 \text { | } 01|000500|(B C C) \mid[C R] \\
& \xrightarrow{\text { to ASCII }} 02|3031| 3031|313030353030| 3035 \mid 0 D
\end{aligned}
$$

The 02 command sets the logic state (ON or OFF) of the intelligent input terminals. The frame format of command 02 follows the Frame format timing diagram and specification table.


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32, and FF (broadcast to all) |
| Command | Transmission command | 2 bytes | 02 or 12 |
| Data | Transmission data | 16 bytes | (see tables below) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The 16-byte data string is specified in the following tables:

| Data (Hex) | 02 Command Description | Data (Hex) | 02 CommandDescription |
| :---: | :---: | :---: | :---: |
| 0000000000000001 | [FW] Forward command | 0000000100000000 | [SF1] Multi-speed bit-level |
| 0000000000000002 | [RV] Reverse command | 0000000200000000 | [SF2] Multi-speed bit-level |
| 0000000000000004 | [CF1] Multi-speed 1 | 0000000400000000 | [SF3] Multi-speed bit-level |
| 0000000000000008 | [CF2] Multi-speed 2 | 0000000800000000 | [SF4] Multi-speed bit-level |
| 0000000000000010 | [CF3] Multi-speed 3 | 0000001000000000 | [SF5] Multi-speed bit-level |
| 0000000000000020 | [CF4] Multi-speed 4 | 0000002000000000 | [SF6] Multi-speed bit-level |
| 0000000000000040 | [JG] Jog operation | 0000004000000000 | [SF7] Multi-speed bit-level |
| 0000000000000080 | [DB] Dynamic braking | 0000008000000000 | [OLR] Overload restriction setting |
| 0000000000000100 | [SET] set 2nd motor | 0000010000000000 | [TL] Torque limit |
| 0000000000000200 | [2CH] 2-stage adjustable speed | 0000020000000000 | [TRQ1] Torque limit select 1 |
| 0000000000000400 | - | 0000040000000000 | [TRQ2] Torque limit select 2 |
| 0000000000000800 | [FRS] Free-run stop | 0000080000000000 | [PPI P/PI] inverter mode select |
| 0000000000001000 | [EXP] External trip | 0000100000000000 | [BOK] Brake confirmation |
| 0000000000002000 | [USP] Unattended start protection | 0000200000000000 | [ORT] Orientation (home) command |
| 0000000000004000 | [CS] Commercial power change | 0000400000000000 | [LAC] Linear Accel/decel Cancel |
| 0000000000008000 | [SFT] Software lock | 0000800000000000 | [PCLR] Position error clear |
| 0000000000010000 | [AT] analog input voltage/current | 0001000000000000 | [STAT] Pulse train input enable |
| 0000000000020000 | [SET3] Set 3rd motor | 0002000000000000 | - |
| 0000000000040000 | [RS] Reset | 0004000000000000 | [ADD] Trigger for frequency addition |
| 0000000000080000 | - | 0008000000000000 | [F-TM] Forcible terminal operation |
| 0000000000100000 | [STA] 3-wire Start | 0010000000000000 | [ATR] Permission of torque command |
| 0000000000200000 | [STP] 3-wire Hold | 0020000000000000 | [KHC] Cumulative power clearance |
| 0000000000400000 | [F/R] 3-wire FWD/REV | 0040000000000000 | [SON] Servo ON |
| 0000000000800000 | [PID] PID enable | 0080000000000000 | [FOC] Forcing |
| 0000000001000000 | [PIDC] PID integrator reset | 0100000000000000 | [MI1] General-purpose input 1 |
| 0000000002000000 | - | 0200000000000000 | [MI2] General-purpose input 2 |


| Data (Hex) | 02 Command Description | Data (Hex) | 02 CommandDescription |
| :--- | :--- | :--- | :--- |
| 0000000004000000 | [CAS] control gain switching function | 0400000000000000 | [MI3] General-purpose input 3 |
| 0000000008000000 | [UP] remote control increment speed | 0800000000000000 | [MI4] General-purpose input 4 |
| 0000000010000000 | [DWN] remote control decrement <br> speed | 1000000000000000 | [MI5] General-purpose input 5 |
| 0000000020000000 | [UDC] remote control clear up/down | 2000000000000000 | [MI6] General-purpose input 6 |
| 0000000040000000 | [OPE] Forcible operation | 4000000000000000 | [MI7] General-purpose input 7 |
| 0000000080000000 | - | 8000000000000000 | [MI8] General-purpose input 8 |


| Data (Hex) | 12 Command Description | Data (Hex) | 12 CommandDescription |
| :---: | :---: | :---: | :---: |
| 0000000000000001 | - | 0000000100000000 | - |
| 0000000000000002 | [AHD] Analog command holding | 0000000200000000 | - |
| 0000000000000004 | [CP1] Multi-stage position select 1 | 0000000400000000 | - |
| 0000000000000008 | [CP2] Multi-stage position select 2 | 0000000800000000 | - |
| 0000000000000010 | [CP3] Multi-stage position select 3 | 0000001000000000 | - |
| 0000000000000020 | [ORL] Zero-return limit function | 0000002000000000 | - |
| 0000000000000040 | [ORG] Zero-return trigger function | 0000004000000000 | - |
| 0000000000000080 | [FOT] Forward drive stop | 0000008000000000 | - |
| 0000000000000100 | [ROT] Reverse drive stop | 0000010000000000 | - |
| 0000000000000200 | [SPD] Speed / position switching | 0000020000000000 | - |
| 0000000000000400 | [PCNT] Pulse counter | 0000040000000000 | - |
| 0000000000000800 | [PCC] Pulse counter clear | 0000080000000000 | - |
| 0000000000001000 | - | 0000100000000000 | - |
| 0000000000002000 | - | 0000200000000000 | - |
| 0000000000004000 | - | 0000400000000000 | - |
| 0000000000008000 | - | 0000800000000000 | - |
| 0000000000010000 | - | 0001000000000000 | - |
| 0000000000020000 | - | 0002000000000000 | - |
| 0000000000040000 | - | 0004000000000000 | - |
| 0000000000080000 | - | 0008000000000000 | - |
| 0000000000100000 | - | 0010000000000000 | - |
| 0000000000200000 | - | 0020000000000000 | - |
| 0000000000400000 | - | 0040000000000000 | - |
| 0000000000800000 | - | 0080000000000000 | - |
| 0000000001000000 | - | 0100000000000000 | - |
| 0000000002000000 | - | 0200000000000000 | - |
| 0000000004000000 | - | 0400000000000000 | - |
| 0000000008000000 | - | 0800000000000000 | - |
| 0000000010000000 | - | 1000000000000000 | - |
| 0000000020000000 | - | 2000000000000000 | - |
| 0000000040000000 | - | 4000000000000000 | - |
| 0000000080000000 | - | 8000000000000000 | - |

The arrangement of the terminal assignment data permits you to assign all inputs in a single command. The example below shows a transmission to the inverter at address Node 1 to set the Forward command, Multi-speed 1 and Multi-speed 2.

$$
\begin{array}{r}
0 \times 0000000000000001 \\
+ \\
+0 \times 0000000000000004 \\
+0 \times 0000000000000008 \\
= \\
0 \times 0000000000000000 \mathrm{D}
\end{array}
$$

$(S T X)|01| 02|0 \times 000000000000000 \mathrm{D}|(\mathrm{BCC}) \mid(\mathrm{CR}) \xrightarrow{\text { to ASCII }}$
$02|3031| 3031|30303030303030303030303030303068| 3035$ |0D

## Command - 03

The 03 command reads the monitor data as a single block.
The frame format of command 03 follows the diagram and specification table. The transmit frame has no data field.

Transmit frame format

| STX | Node | Command | BCC | [CR] |
| :--- | :--- | :--- | :--- | :--- |


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Command | Transmission command | 2 bytes | 03 |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| $[\mathrm{CR}]$ | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The receive frame has a 104-byte data field, containing values for 13 items.

Receive frame format


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Data | Transmission data | 104 <br> bytes | (see next table) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The data in the receive frame contains 8 -byte values for 13 items, listed in the table below:

| No. | Monitor Item | Units | Multiplier | Data <br> Size | Notes |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | Output frequency | Hz | 100 | 8 bytes | Dec. ASCII code |
| 2 | Output current | A | 10 | 8 bytes | Dec. ASCII code |
| 3 | Direction of rotation | - | - | 8 bytes | $0=$ Stop <br> $1=$ FWD <br> $2=$ REV |
| 4 | PID feedback monitor | $\%$ | 100 | 8 bytes | Dec. ASCII code |
| 5 | Intelligent input monitor | - | - | 8 bytes | Dec. ASCII code |
| 6 | Intelligent output monitor | - | - | 8 bytes | Dec. ASCII code |
| 7 | Frequency converting monitor | - | 100 | 8 bytes | Dec. ASCII code |
| 8 | Output torque monitor | $\%$ | 1 | 8 bytes | Dec. ASCII code |
| 9 | Output voltage monitor | V | 10 | 8 bytes | Dec. ASCII code |
| 10 | Electric power monitor | kW | 10 | 8 bytes | Dec. ASCII code |
| 11 | Reserved | - | - | 8 bytes | $=00000000$ |
| 12 | Run Mode time monitor | hours | 1 | 8 bytes | Dec. ASCII code |
| 13 | Power ON time monitor | hours | 1 | 8 bytes | Dec. ASCII code |

The eight bytes for intelligent input or intelligent output data have a bit set in the data field for each I/O point that is ON, according to the following table:

| Terminal | Monitor Item | Data |
| :---: | :--- | :--- |
| $[1]$ | Input 1 | 00000001 |
| $[2]$ | Input 2 | 00000002 |
| $[3]$ | Input 3 | 00000004 |
| $[4]$ | Input 4 | 00000008 |
| $[5]$ | Input 5 | 00000010 |
| $[6]$ | Input 6 | 00000020 |
| $[7]$ | Input 7 | 00000040 |
| $[8]$ | Input 8 | 00000080 |
| $[\mathrm{FW}]$ | Forward input | 00000100 |
| $[11]$ | Output 1 | 00000001 |
| $[12]$ | Output 2 | 00000002 |
| $[13]$ | Output 3 | 00000003 |
| $[14]$ | Output 4 | 00000008 |
| $[15]$ | Output 5 | 00000010 |
| $[\mathrm{AL}]$ | Alarm relay | 00000020 |

Command - 04
The 04 command reads the status of the inverter. The frame format of command 04 follows the diagrams and specification tables. The transmit frame has no data field.

Transmit frame format


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Command | Transmission command | 2 bytes | 04 |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The receive frame has an 8-byte data field, containing values for three trip items (plus a reserved field).

Receive frame format


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Data | Transmission data | 8 bytes | (see next table) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| $[\mathrm{CR}]$ | Control code (carriage return) | 1 byte | [CR] (0x0D) |

Trip data is organized as shown. The table below lists the codes and their meanings.

Data field contents

| Status A | Status B | Status C | (reserved) |
| :--- | :--- | :--- | :--- |


| Code | Status A Definition | Status B Definition | Status C Definition |
| :---: | :--- | :---: | :--- |
| 00 | Initial status | On stopping |  |
| 01 | - | On running | Stop |
| 02 | On Stopping | On tripping | Deceleration speed |
| 03 | On running | - | Constant speed |
| 04 | On free-run stop | - | Acceleration speed |
| 05 | On jog | - | Forward |
| 06 | On dynamic braking | - | Reverse |
| 07 | On retry | - | Reverse from forward |
| 08 | On trip | - | Forward from reverse |
| 09 | On under-voltage | - | Forward start |
| 10 | - | - | Reverse start |

Command - 05

The 05 command reads the inverter's trip history. The frame format of command 05 follows the diagrams and specification tables. The transmit frame has no data field.

Transmit frame format

| STX | Node | Command | BCC | [CR] |
| :--- | :--- | :--- | :--- | :--- |


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Command | Transmission command | 2 bytes | 05 |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| $[\mathrm{CR}]$ | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The receive frame has a 440-byte data field. This consists of an 8-byte total accumulated number of trip events, followed by six 72-byte strings for the six most recent trip events as shown below.

Receive frame format


Data field contents

| Total count | Trip 1 | Trip 2 | Trip 3 | Trip 4 | Trip 5 | Trip 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Data | Transmission data | 440 <br> bytes | (see next table) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The nine bytes of data for each trip event history is listed below. The data contains the multiplier to adjust the decimal point. Divide the data by that factor to derive the actual value.

| No. | Monitor Item | Units | Multiplier | Data <br> Size | Notes |
| :---: | :--- | :---: | :---: | :---: | :--- |
| 1 | Trip factor | - | - | 8 bytes | Factor code |
| 2 | Inverter Status A | - | - | 8 bytes | Same as 04 <br> command data |
| 3 | Inverter Status B | - | - | 8 bytes |  |
| 4 | Inverter Status C | - | - | 8 bytes |  |
| 5 | Output frequency | Hz | 10 | 8 bytes | Dec. ASCII code |
| 6 | Accumulated Run Mode time | hours | 1 | 8 bytes | Dec. ASCII code |
| 7 | Output current | A | 10 | 8 bytes | Dec. ASCII code |
| 8 | Output voltage | V | 10 | 8 bytes | Dec. ASCII code |
| 9 | Power ON time | hours | 1 | 8 bytes | Dec. ASCII code |

For Command 05, bytes 2, 3, and 4 of the event history are status codes A, B, and C , respectively. The tables below provide status code descriptions.

Data field contents

|  | byte 2 | byte 3 | byte 4 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Status A | Status B | Status C |  |


| Code | Status A Definition | Status C Definition |
| :---: | :--- | :--- |
| 00 | Initial status | On reset |
| 01 | - | On stopping |
| 02 | On Stopping | On deceleration |
| 03 | On running | Constant speed |
| 04 | On free-run stop | On acceleration |
| 05 | On jog | On 0 Hz running |
| 06 | On dynamic braking | On running |
| 07 | On retry | On dynamic braking |
| 08 | On trip | On overload restriction |
| 09 | On under-voltage | - |


| Bit | Status B Definition | Error <br> Code |
| :---: | :--- | :---: |
| 0 | Ground fault | E14 |
| 1 | IGBT error, U phase | E30 |
| 2 | Under-voltage error | E09 |
| 3 | Over-voltage protection | E07 |
| 4 | Thermal trip | E21 |
| 5 | IGBT error, V phase | E30 |
| 6 | IGBT error, W phase | E30 |
| 7 | Gate array error | E 23 |

The 06 command reads a single parameter value from the inverter, which is specified by the data field this read command.

Transmit frame format

| STX | Node | Command | Data | BCC | $[\mathrm{CR}]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Command | Transmission command | 2 bytes | 06 |
| Data | Parameter specified to be read | 4 bytes | (see tables below) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| $[\mathrm{CR}]$ | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The receive frame includes an ACK (acknowledge) character, followed by an 8 -byte data field.

Receive frame format


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| ACK | Control code (ACKnowledge) | 1 byte | ACK (0x06) |
| Data | Parameter value | 8 bytes | Value of parameter times ten, <br> returned as ASCII char. code, <br> except for H003 and H203 (see <br> table below) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

Use the codes in the table below to return parameters for H 003 and H 203 (motor capacity selection).

| Code Data | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{0 2}$ | $\mathbf{0 3}$ | $\mathbf{0 4}$ | $\mathbf{0 5}$ | $\mathbf{0 6}$ | $\mathbf{0 7}$ | $\mathbf{0 8}$ | $\mathbf{0 9}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Japan or U.S.A. mode (B85 = 00 or 02) | 0.2 kW | - | 0.4 | - | 0.75 | - | 1.5 | 2.2 | - | 3.7 | - |
| EU mode (B85=01) | 0.2 kW | 0.37 | - | 0.55 | 0.75 | 1.1 | 1.5 | 2.2 | 3.0 | - | 4.0 |
| Code Data | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ |
| Japan or U.S.A. mode (B85 = 00 or 02) | 5.5 kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| EU mode (B85=01) | 5.5 kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| Code Data | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 2}$ |
| Japan or U.S.A. mode (B85 $=00$ or 02) | 90 kW | 110 | 132 | 150 | 160 | 185 | 200 | 220 | 250 | 280 | 300 |
| EU mode (B85=01) | 90 kW | 110 | 132 | 150 | 160 | 185 | 200 | 220 | 250 | 280 | 300 |
| $\mathbf{C o d e}$ Data | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | - | - | - | - | - | - | - |
| Japan or U.S.A. mode (B85 $=00$ or 02) | 315 kW | 340 | 355 | 400 | - | - | - | - | - | - | - |
| EU mode (B85=01) | 315 kW | 340 | 355 | 400 | - | - | - | - | - | - | - |

The 07 command sets a parameter value equal to the value specified in the transmission. The frame format of command 07 follows the diagram and specification table.

Frame format

| STX | Node | Command | Parameter | Data | BCC | $[C R]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32, and FF (broadcast to all <br> nodes) |
| Command | Transmission command | 2 bytes | 07 |
| Parameter | Function code of parameter | 4 bytes | F002..., A001..., B001..., C001..., <br> H003..., P001... |
| Data | Transmission data | 8 bytes | Value of parameter times ten as <br> ASCII char. code, except for <br> H003 and H203 (see table below) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

Note that the parameter F001, the output frequency, can be set more directly with host command 01 instead of with this command. Use the codes in the following table for setting parameters associated with H003 and H203.

| Code Data | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{0 2}$ | $\mathbf{0 3}$ | $\mathbf{0 4}$ | $\mathbf{0 5}$ | $\mathbf{0 6}$ | $\mathbf{0 7}$ | $\mathbf{0 8}$ | $\mathbf{0 9}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Japan or U.S.A. mode (B85 = 00 or 02) | 0.2 kW | - | 0.4 | - | 0.75 | - | 1.5 | 2.2 | - | 3.7 | - |
| EU mode (B85=01) | 0.2 kW | 0.37 | - | 0.55 | 0.75 | 1.1 | 1.5 | 2.2 | 3.0 | - | 4.0 |
| Code Data | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ |
| Japan or U.S.A. mode (B85 = 00 or 02) | 5.5 kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| EU mode (B85=01) | 5.5 kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| Code Data | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 2}$ |
| Japan or U.S.A. mode (B85 = 00 or 02) | 90 kW | 110 | 132 | 150 | 160 | 185 | 200 | 220 | 250 | 280 | 300 |
| EU mode (B85=01) | 90 kW | 110 | 132 | 150 | 160 | 185 | 200 | 220 | 250 | 280 | 300 |
| Code Data | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | - | - | - | - | - | - | - |
| Japan or U.S.A. mode (B85 $=00$ or 02) | 315 kW | 340 | 355 | 400 | - | - | - | - | - | - | - |
| EU mode (B85=01) | 315 kW | 340 | 355 | 400 | - | - | - | - | - | - | - |

Command - 08
The 08 command initializes the inverter parameters to the factory default values. First, you must set B84 (use command 07) to specify whether you want to clear the trip history at the same time. Also, set B85 to specify the country code for the initialization (use command 07).

The frame format of command 08 follows the diagram and specification table.

Frame format


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32, and FF (broadcast to all <br> nodes) |
| Command | Transmission command | 2 bytes | 08 |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

Command - 09 The 09 command verifies whether or not it is possible to set a particular parameter in the EEPROM. The frame format of command 08 follows the diagram and specification table.

Transmit frame format


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Command | Transmission command | 2 bytes | 09 |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The receive frame includes an ACK (acknowledge) character, followed by a 2-byte data field with the result.

Receive frame format


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| ACK | Control code (ACKnowledge) | 1 byte | ACK (0x06) |
| Data | Parameter value | 2 bytes | 00 = setting not allowed, <br> $01=$ setting is allowed |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

Command - OA The 0A command sets a value in the EEPROM.
The frame format of command 0A follows the diagram and specification table.

Frame format


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32, and FF (broadcast to all <br> nodes) |
| Command | Transmission command | 2 bytes | 0A |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

Command - OB The 0B command recalculates the inverter's internal motor constants. Use this function after the base frequency or any Hxxx parameters are changed via the serial link commands.
The frame format of command 0B follows the diagram and specification table.

> Frame format


| Element | Description | Size | Value |
| :--- | :--- | :---: | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| Command | Transmission command | 2 bytes | 0B |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, <br> Command, and Data |
| $[\mathrm{CR}]$ | Control code (carriage return) | 1 byte | $[\mathrm{CR}]$ (0x0D) |

## Communications Reference Information

Inverter Affirmative Reply

The standard affirmative reply from the inverter uses the ACK character (acknowledge) in the data field. The frame format of this reply follows the diagram and specification table.

Frame format


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| ACK | Control code (ACKnowledge) | 1 byte | ACK (0x06) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node and ACK |
| $[\mathrm{CR}]$ | Control code (carriage return) | 1 byte | [CR] (0x0D) |

## Inverter Negative Reply

The standard negative reply from the inverter uses the NAK character (negative acknowledge) in the data field. The frame format of this reply follows the diagram and specifica-
Frame format

| STX | Node | NAK | Error <br> code | BCC | $[C R]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | tion table.


| Element | Description | Size | Value |
| :--- | :--- | :--- | :--- |
| STX | Control code (STart of TeXt) | 1 byte | STX (0x02) |
| Node | Node (station) address of inverter | 2 bytes | 01 to 32 |
| NAK | Control code <br> (Negative ACKnowledge) | 1 byte | NAK (0x15) |
| Error code | Code representing error type | 2 bytes | (See next table below) |
| BCC | Block check sum code | 2 bytes | Exclusive OR of Node, Data, <br> and NAK |
| [CR] | Control code (carriage return) | 1 byte | [CR] (0x0D) |

The error codes for a NAK (negative acknowledge) are:

| Error <br> Code | Error Description | Error <br> Code | Error Description |
| :---: | :--- | :---: | :--- |
| 01 H | Parity error | 07 H | Receive buffer overrun error |
| 02 H | Check sum error | 08 H | Receive time-out error |
| 03 H | Framing error | 11 H | Abnormal command code error |
| 04 H | Overrun error | 13 H | Execution disabled |
| 05 H | Protocol error | 16 H | Abnormal parameter code/value <br> error |
| 06 H | ASCII code error | - |  |

If a host computer broadcasts a command to all inverter stations, no response will be returned to the host.

Block Check Code (BCC)

This section shows how the inverter protocol computes defines a BCC—block check code. The BCC is calculated for each frame transmitted and can be used to verify the integrity of data transmission. The example below shows command 01 setting the inverter frequency to 5 Hz .

Frame format


The block check code is computed by using the ASCII codes (shown above) and applying eXclusive OR (XOR) operations. Beginning with the first pair of bytes, the result of their XOR result is then used in an XOR operation with the third byte, and so on. For this example, the BCC calculation is shown below.

Data bytes:


ASCII Code Table The table below shows only the ASCII codes used for function codes and parameter data.

| Character | ASCII Code | Character | ASCII Code | Character | ASCII Code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STX | 02 | 4 | 34 | C | 43 |
| ACK | 06 | 5 | 35 | D | 44 |
| CR | 0 D | 6 | 36 | E | 45 |
| NAK | 15 | 7 | 37 | F | 46 |
| 0 | 30 | 8 | 38 | H | 48 |
| 1 | 31 | 9 | 39 | P | 50 |
| 2 | 32 | A | 41 | b | 62 |
| 3 | 33 | B | 42 | - | - |

Communication Test Mode

The communication test mode verifies that the inverter can properly send and receive data via the RS485 serial port. Follow the steps below to perform the communication test.

1. Remove the serial cable (if present) connected to the TM2 connector block of the control terminals, as shown below.


NOTE: It is not necessary to connect a loopback jumper. The RS485 port uses a transceiver for communications, which already allows simultaneous transmitting and receiving.
2. Use the front panel keypad to navigate to parameter C071, Communication Speed Selection. Change parameter C071=02 and press Store. Value 02 is the Loopback Test option. Now the inverter is ready to conduct the loopback test.
3. Turn the inverter power OFF and then ON again to initiate the communication test. Observe the keypad display and compare to the results shown below.

$$
88.80
$$

4. Press the Stop/Rest button on the keypad to return the inverter keypad/ display to normal operation.
5. Change C 071 to its original setting (default is $\mathrm{C} 071=04$ ). Otherwise, while $\mathrm{C} 071=02$, the inverter will perform the communications loopback test at each powerup.

## ModBus Mode Communications

## Transmission Procedure

The network master sends a frame to initiate communications with a slave, as shown in the figure below.


- Query - A frame sent from the external control equipment to the inverter
- Response - A frame returned from the inverter to the external control equipment
- Wait time (C077) - If the inverter cannot complete the reception of a query from the host (master)within the communication timeout period, the inverter responds to the query and waits to receive the query from the beginning. Subsequently, the inverter returns no response to the master system.

After reception timeout occurs, the inverter operates according to function C076, Action upon communication error selection (see table below). Monitoring of reception timeout begins when the first communication is performed upon inverter powerup or a reset. Reception timeout is monitored only when the inverter communicates with the master system.

| Function Code | Name/Description | OPE | Range and Settings |
| :---: | :---: | :---: | :---: |
| C076 | Action upon communication error selection | 00 | Trip (E41) |
|  |  | 01 | Trip (E41) after deceleration and stop |
|  |  | 02 | No action (ignore errors) |
|  |  | 03 | Free-run stop |
|  |  | 04 | Decelerate and stop |
| C077 | Communication timeout before trip |  | 0.00 to 99.99 (seconds) |
|  | Limit timer for reception timeout |  |  |
| C078 | Communication wait time |  | 0.0 to 1000 (milliseconds) |
|  | Time to wait until the inverter starts sending a response after reception of a query (excluding the silent interval) |  |  |

The inverter always sends a response frame after receiving a query frame. The inverter does not initiate any communication with the host (master).

Message Configuration: Query

Each frame is formatted as follows:

| Frame Format |
| :--- |
| Header (silent interval) |
| Slave address |
| Function code |
| Data |
| Error check code |
| Trailer (silent interval) |

## Slave address:

- This is a numer from 1 to 32 assigned to each inverter (slave). (Only the inverter having the address given as a slave address in the query can receive the query.)
- When slave address " 0 " is specified, the query can be addressed to all inverter simultaneously (broadcasting).
- In broadcasting, the host (master) cannot read inverter data nor perform a loopback test.


## Data:

- The data contains a function command.
- The data format used in the SJ7002 corresponds to the ModBus data format below.

| Name of Data | Description |
| :--- | :--- |
| Coil | Binary data that can be referenced and changed (1 bit long) |
| Holding Register | 16-bit data that can be referenced and changed |

## Function Code:

Specify a function you want to make the inverter execute. Function codes available to the SJ7002 are listed below.

| Function <br> Code | Function | Maximum data size <br> (bytes available per <br> message) | Maximum number of <br> data elements per <br> message |
| :---: | :--- | :---: | :--- |
| 01 h | Read Coil Status | 4 | 32 coils (in bits) |
| 03 h | Read Holding Register | 8 | 4 registers (in bytes) |
| 05 h | Write in Coil | 2 | 1 coil (in bits) |
| 06 h | Write in Holding Register | 2 | 1 register (in bytes) |
| 08 h | Loopback Test | - | - |
| 0 Fh | Write in Coils | 4 | 32 coils (in bits) |
| 10 h | Write in Registers | 4 | 4 registers (in bytes) |

## Error check:

Modbus-RTU uses CRC (Cyclic Redundancy Check) for error checking.

- The CRC code is 16 -bit data that is generated for 8 -bit blocks of arbitrary length.
- The CRC code is generated by a generator polynomial CRC-16 ( $\left.\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+1\right)$.


## Header and trailer (silent interval):

Latency is the time between the reception of a query from the master and transmission of a response from the inverter.

- The header and trailer set the total time the inverter should wait before sending a response after having received a query from the master system.
- Be sure to specify the time corresponding to the transmission of 3.5 characters ( 24 bits) as the waiting time. If a shorter waiting time (corresponding to the transmission of fewer than 3.5 characters) is specified, the inverter will not respond.
- The actual waiting time is the sum of the silent interval (corresponding to the transmission of 3.5 characters) and the communication wait time (C078).


## Message <br> Configuration: <br> Response

## Time required for communication:

- After the inverter receives a query, the inverter waits for the sum of the silent interval (corresponding to the transmission of 3.5 characters) and the communication wait time (C078) before sending a response.
- After receiving a response from the inverter, the master system must wait for the silent interval (corresponding to the transmission of 3.5 characters) or longer before sending the next query to the inverter.


## Normal response:

- If the query specifies the function code ( 08 h ) for the loopback test, the inverter returns a response that has the same contents as the query.
- If the query specifies a function code $(05 \mathrm{~h}, 06 \mathrm{~h}, 0 \mathrm{Fh}$, or 10 h$)$ for writing data to registers or coils, the inverter returns the query without a change as a response.
- If the query specifies a function code ( 01 h or 03 h ) for reading a register or coil, the inverter returns a response that contains the slave address and function code specified in the query and the data read from the register or coil.


## Response when an error occurs:

- When finding any error in a query (except for a transmission error), the inverter returns an exception response without executing anything,
- You can check the error by the function code in the response. The function code of the exception response is the sum of the function code of the query and 80 h .
- The content of the error is known from the exception code.

| Field Configuration |
| :--- |
| Slave address |
| Function code |
| Exception code |
| CRC-16 |


| Exception Code | Description |
| :---: | :--- |
| 01 h | The specified function is not supported. |
| 02 h | The specified address is not found. |
| 03 h | The format of the specified data is not acceptable. |
| 21 h | The data to be written in a holding register is outside the inverter. |


| Exception Code | Description |
| :---: | :--- |
| 22 h | The specified functions are not available to the inverter. <br> - Function to change the content of a register that cannot be changed <br> while the inverter is in service |
|  | - Function to submit an ENTER command during running (UV) <br> - Function to write in a register during tripping (UV) <br> - Function to write in a read-only register (or coil) |

## No response occurs:

In the cases below, the inverter ignores a query and returns no response.

- When receiving a broadcasting query
- When detecting a transmission error in reception of a query
- When the slave address set in the query is not equal to the slave address of the inverter
- When a time interval between data elements constituting a message is shorter than 3.5 characters
- When the data length of the query is invalid


NOTE: Provide a timer in the master and make the master retransmit the same query when no response is made within a preset time period after the preceding query was sent.

## Explanation of

 Function Codes
## Read Coil Status [01h]:

This function reads the status (ON/OFF) of selected coils. An example follows below.

- Read intelligent input terminals [1] to [6] of an inverter having a slave address " 8 ."
- This example assumes the intelligent input terminals have terminal states listed below (coils 13 and 14 are OFF).

| Item | Data |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Intelligent input terminal | $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | $[6]$ |
| Coil number | 7 | 8 | 9 | 10 | 11 | 12 |
| Terminal status | ON | ON | ON | OFF | ON | OFF |

## Query:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 08 |
| 2 | Function code | 01 |
| 3 | Coil start number <br> (high order) | 00 |
| 4 | Coil start number (low <br> order) | 06 |
| 5 | Number of coils (high <br> order) *2 | 00 |
| 6 | Number of coils (low <br> order) $* 2$ | 06 |
| 7 | CRC-16 (high order) | 5 C |
| 8 | CRC-16 (low order) | 90 |

Note 1: Broadcasting is disabled.
Note 2: The starting coil number is one less than the number of the coil to be read first.
Note 3: When 0 or more than 32 is specified as a number of coils, error code " 03 h " is returned.

Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address | 08 |
| 2 | Function code | 01 |
| 3 | Data size (in bytes) | 01 |
| 4 | Coil data $* 4$ | 17 |
| 5 | CRC-16 (high order) | 12 |
| 6 | CRC-16 (low order) | 1 A |

Note 4: Data is transferred by the specified number of data bytes (data size).

- The data set in the response shows terminal states of coils 7 to 14 .
- Data " $17 \mathrm{~h}=00010111 \mathrm{~b}$ " indicates the following assuming coil 7 is the LSB.

| Item | Data |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coil number | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 |
| Coil status | OFF | OFF | OFF | ON | OFF | ON | ON | ON |

- When a read coil is outside the defined coils, the final coil data to be transmitted contains "0"as the status of the coil outside the range.
- When the Read Coil Status command cannot be executed normally, see the exception response.


## Read Holding Register [03h]:

This function reads the contents of the specified number of consecutive holding registers (of specified register addresses). An example follows below.

- Reading previous three trip factors from an inverter having a slave address " 5 "
- This example assumes the previous three trip factors are as follows:

| SJ7002 Command | D081 (N) | D082 (N-1 |
| :--- | :---: | :---: |
| Register number | 0012 h | 0013 h |
| Trib factor (upper digit) | Over-voltage (E07) | Decelerating (02) |

## Query:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 05 |
| 2 | Function code | 03 |
| 3 | Register start number <br> (high order) | 00 |
| 4 | Register start number <br> (low order) | 11 |
| 5 | Number of registers <br> (high order) *2 | 00 |
| 6 | Number of registers <br> (low order) *2 | 02 |
| 7 | CRC-16 (high order) | 95 |
| 8 | CRC-16 (low order) | 8 A |

Note 1: Broadcasting is disabled.
Note 2: The starting coil number is one less than the number of the coil to be read first.

Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address | 05 |
| 2 | Function code | 03 |
| 3 | Data size (in bytes) $* 3$ | 04 |
| 4 | Register start number <br> (high order) | 00 |
| 5 | Register start number <br> (low order) | 07 |
| 6 | Register start number +1 <br> (high order) | 00 |
| 7 | Register start number +1 <br> (low order) | 02 |
| 8 | CRC-16 (high order) | 36 |
| 9 | CRC-16 (low order) | 37 |

Note 3: Data is transferred by the specified number of data bytes (data size). In this case, 4 bytes are used to return the content of two holding registers.

The data set in the response is as follows:

| Response Buffer | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :--- | :---: | :---: | :---: | :---: |
| Starting register <br> number | +0 (high order) | +0 (low order) | +1 (high order) | +1 (low order) |
| Register status | 00 h | 07 h | 00 h | 02 h |
| Trip data | Over-voltage trip |  | Decelerating |  |

When the Read Holding Register command cannot be executed normally, refer to the exception response.

## Write in Coil [05h]:

This function writes data in a single coil. Coil status changes are as follows:

| Data | Coil Status |  |
| :--- | :---: | :---: |
|  | OFF to ON | ON to OFF |
| Change data (high order) | FFh | 00 h |
| Change date (low order) | 00 h | 00 h |

An example follows (note that to command the inverter, set A002=03):

- Sending a RUN command to an inverter having slave address " 10 "
- This example writes in coil number " 1 ."


## Query:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 0 A |
| 2 | Function code | 05 |
| 3 | Coil start number (high <br> order) | 00 |
| 4 | Coil start number (low <br> order) 2 | 00 |
| 5 | Change data (high <br> order) | FF |
| 6 | Change data (low order) | 00 |
| 7 | CRC-16 (high order) | 8 D |
| 8 | CRC-16 (low order) | 41 |

Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address | 0 A |
| 2 | Function code | 05 |
| 4 | Coil start number (high <br> order) | 00 |
| 5 | Coil start number (low <br> order) | 00 |
| 6 | Change data (high <br> order) | FF |
| 7 | Change data (low order) | 00 |
| 8 | CRC-16 (high order) | 8 D |
| 9 | CRC-16 (low order) | 41 |

Note 1: Broadcasting is disabled.
Note 2: The starting coil number is one less than the number of the coil to be read first.

When the Write in Coil command cannot be executed normally, refer to the exception response.

## Write in Holding Register [06h]:

This function writes data in a specified holding register. An example follows below.

- Write " 50 Hz " as the first Multi-speed 0 (A020) in an inverter having slave address " 5 ."
- This example uses change data " $50(0032 \mathrm{~h})$ " to set " 50 Hz " as the data resolution of the register " 1203 h " holding the base frequency setting (A003) is 1 Hz .

| SJ7002 Command | D081 (N) | D082 (N-1 |
| :--- | :---: | :---: |
| Register number | 0012 h | 0013 h |
| Trib factor (upper digit) | Over-voltage (E07) | Decelerating (02) |

Query:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 05 |
| 2 | Function code | 06 |
| 3 | Register start number <br> (high order) $* 2$ | 12 |
| 4 | Register start number <br> (low order) $* 2$ | 02 |
| 5 | Change data (high <br> order) | 00 |
| 6 | Change data (low order) | 32 |
| 7 | CRC-16 (high order) | AD |
| 8 | CRC-16 (low order) | 23 |

Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address | 05 |
| 2 | Function code | 06 |
| 3 | Register start number <br> (high order) | 12 |
| 4 | Register start number <br> (low order) | 02 |
| 5 | Change data (high <br> order) | 00 |
| 6 | Change data (low order) | 32 |
| 7 | CRC-16 (high order) | AD |
| 8 | CRC-16 (low order) | 23 |

Note 1: Broadcasting is disabled.
Note 2: The starting coil number is one less than the number of the coil to be read first.

When the Write Holding Register command cannot be executed normally, refer to the exception response.

## Loopback Test [08h]:

This function checks a master-slave transmission using any test data. An example follows:

- Send test data to an inverter having slave address " 1 " and receiving the test data from the inverter (as a loopback test).

Query:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 01 |
| 2 | Function code | 08 |
| 3 | Test subcode (high <br> order) | 00 |
| 4 | Test subcode (low <br> order) | 00 |
| 5 | Data (high order) | Any |
| 6 | Data (low order) | Any |
| 7 | CRC-16 (high order) | CRC |
| 8 | CRC-16 (low order) | CRC |

Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address | 01 |
| 2 | Function code | 08 |
| 3 | Test subcode (high <br> order) | 00 |
| 4 | Test subcode (low <br> order) | 00 |
| 5 | Data (high order) | Any |
| 6 | Data (low order) | Any |
| 7 | CRC-16 (high order) | AD |
| 8 | CRC-16 (low order) | 23 |

Note 1: Broadcasting is disabled.
The test subcode is for echo $(00 \mathrm{~h}, 00 \mathrm{~h})$ only and not available to the other commands.

## Write in Coils [0Fh]:

This function writes data in consecutive coils. An example follows:

- Change the state of intelligent input terminal [1] to [6] of an inverter having a slave address "5."
- This example assumes the intelligent input terminals have terminal states listed below.

| Item | Data |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Intelligent input terminal | $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | $[6]$ |
| Coil number | 7 | 8 | 9 | 10 | 11 | 12 |
| Terminal status | ON | ON | ON | OFF | ON | OFF |

## Query:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 05 |
| 2 | Function code | 0 F |
| 3 | Coil start number <br> (high order) | 00 |
| 4 | Coil start number (low <br> order) | 06 |
| 5 | Number of coils (high <br> order) 22 | 00 |
| 6 | Number of coils (low <br> order) $* 2$ | 06 |
| 7 | Byte number *3 | 02 |
| 8 | Change data (high <br> order) $* 3$ | 17 |
| 9 | Change data (low <br> order)*3 | 00 |
| 10 | CRC-16 (high order) | DB |
| 11 | CRC-16 (low order) | 3 E |

Note 1: Broadcasting is disabled.
Note 2: The starting coil number is one less than the number of the coil to be read first.
Note 3: The change data is a set of highorder data and low-order data. So when the size (in bytes) of data to be changed is an odd number, add " 1 " to the data size (in bytes) to make it an even number

Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address | 05 |
| 2 | Function code | 0 F |
| 3 | Coil start number <br> (high order) | 00 |
| 4 | Coil start number (low <br> order) | 06 |
| 5 | Number of coils (high <br> order) $* 2$ | 00 |
| 6 | Number of coils (low <br> order) $* 2$ | 06 |
| 7 | CRC-16 (high order) | 34 |
| 8 | CRC-16 (low order) | 4 C |

Note 4: Data is transferred by the specified number of data bytes (data size).

## Write in Holding Registers [10h]:

This function writes data in consecutive holding registers. An example follows:

- Write " 3000 seconds" as the first acceleration time 1 (F002) in an inverter having a slave address " 1 ."
- This example uses change data " 300000 (493E0h)" to set " 3000 seconds" as the data resolution of the registers " 1103 h " and "1104h" holding the first acceleration time 1 (F002) is 0.01 second.


## Query:

| No. | Field Name | Example (hex) |
| :---: | :---: | :---: |
| 1 | Slave address *1 | 01 |
| 2 | Function code | 10 |
| 3 | Start address (high order) *2 | 11 |
| 4 | Start address (low order) *2 | 02 |
| 5 | Number of holding registers (high order) | 00 |
| 6 | Number of holding registers (low order) | 02 |
| 7 | Byte number *3 | 04 |
| 8 | Change data 1 (high order) | 00 |
| 9 | Change data 1 (low order) | 04 |
| 10 | Change data 2 (high order) | 93 |
| 11 | Change data 2 (low order) | E0 |
| 12 | CRC-16 (high order) | 9E |
| 13 | CRC-16 (low order) | 9F |

Note 1: Broadcasting is disabled.
Note 2: The starting coil number is one less than the number of the coil to be read first.

## Response:

| No. | Field Name | Example <br> (hex) |
| :---: | :--- | :---: |
| 1 | Slave address *1 | 01 |
| 2 | Function code | 10 |
| 3 | Register start number <br> (high order) | 11 |
| 4 | Register start number <br> (low order) | 02 |
| 5 | Number of holding <br> registers (high order) | 00 |
| 6 | Number of holding <br> registers (low order) | 02 |
| 7 | CRC-16 (high order) | E5 |
| 8 | CRC-16 (low order) | 34 |

When the Write Holding Register command cannot be executed normally, refer to the exception response.

## Exception Response:

When sending a query (excluding a broadcasting query) to an inverter, the master always requests a response from the inverter. Usually, the inverter returns a response according to the query. However, when finding an error in the query, the inverter returns an exception response. The exception response consists of the fields shown below.

| Field Configuration |
| :--- |
| Slave address |
| Function code |
| Exception code |
| CRC-16 |

The content of each field is explained below. The function code of the exception response is the sum of the function code of the query and 80 h . The exception code indicates the factor of the exception response.

| Function Code |  |
| :---: | :---: |
| Query | Exception Response |
| 01 h | 81 h |
| 03 h | 83 h |
| 05 h | 85 h |
| 06 h | 86 h |
| 0 Fh | 8 Fh |
| 10 h | 90 h |


| Exception Code | Description |
| :---: | :--- |
| 01 h | The specified function is not supported. |
| 02 h | The specified address is not found. |
| 03 h | The format of the specified data is not acceptable. |
| 21 h | The data to be written in a holding register is outside the inverter. |
| 22 h | The specified functions are not available to the inverter. <br> - Function to change the content of a register that cannot be changed <br> while the inverter is in service |
|  | - Function to submit an ENTER command during running (UV) <br> - Function to write in a register during tripping (UV) <br> - Function to write in a read-only register (or coil) |

## Store New Register Data <br> (ENTER <br> Command)

Neither the command (06h) to write data to a register nor the command (10h) to write data to multiple registers can store the updates they made in the internal memory of the inverter. Turning the inverter power off without storing the updates deletes them and restores the original register settings. If you intend to store register updates in the internal memory of the inverter, issue the Enter command as described below.

If you have updated a control constant, you must recalculate the motor constants. In such cases, use register "0900h" for recalculation as described below.

Submitting an ENTER Command:

- Write any data in all memory (of a holding register at 0900h) by the Write in Holding Register command [06h].

| Write Data | Description |
| :---: | :--- |
| 0000 | Recalculate the motor constants |
| 0001 | Store the register data |
| Other | Recalculate the motor constants and store the register data |

NOTE: The ENTER command takes much time to run. You can check its progress by monitoring the Data Writing signal (of a coil at 001Ah).

NOTE: The service life of the storage element of the inverter is limited (to about 100,000 write operations). Frequent use of the ENTER command may shorten its service life.

## ModBus Data Listing

ModBus Coil List The following tables list the primary coils for the inverter interface to the network. The table legend is given below.

- Coil Number - The network register address offset for the coil, in hex and decimal. Actual network address is $30001+$ offset. The coil data is a single bit (binary) value.
- Name - The functional name of the coil
- R/W - The read-only (R) or read-write (R/W) access permitted to the inverter data
- Description - The meaning of each of the states of the coils

| List of Coil Numbers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Coil number |  | Name | R/W | Description |
| hex | dec. |  |  |  |
| 0000h | 00000 | (Reserved) | - | - |
| 0001h | 00001 | Operation command | R/W | 0 ... Stop <br> 1 ... Run (enabled when A003=03) |
| 0002h | 00002 | Rotation direction command | R/W | $0 \ldots \mathrm{REV}$ <br> 1 ...FW (enabled when A003=03) |
| 0003h | 00003 | External trip (EXT) | R/W | 0 ... No trip event <br> 1 ... Trip occurred |
| 0004h | 00004 | Trip reset (RS) | R/W | 0 ... No reset condition <br> 1 ... Reset |
| 0005h | 00005 | (Reserved) | - | - |
| 0006h | 00006 | (Reserved) | - | - |
| 0007h | 00007 | Intelligent input terminal [1] | R/W | $0 \ldots \text { OFF *1 }$ |
| 0008h | 00008 | Intelligent input terminal [2] | R/W |  |
| 0009h | 00009 | Intelligent input terminal 3] | R/W |  |
| 000Ah | 00010 | Intelligent input terminal [4] | R/W |  |
| 000Bh | 00011 | Intelligent input terminal [5] | R/W |  |
| 000Ch | 00012 | Intelligent input terminal [6] | R/W |  |
| 000Dh | 00013 | Intelligent input terminal [7] | R/W |  |
| 000Eh | 00014 | Intelligent input terminal [8] | R/W |  |
| 000Fh | 00015 | Run/Stop status | R | 0 ... Stop (corresponds to D003 monitor) <br> 1 ... Run |
| 0010h | 00016 | FW/REV status | R | $\begin{aligned} & 0 \ldots \mathrm{FW} \\ & 1 \ldots \mathrm{RV} \end{aligned}$ |
| 0011h | 00017 | Inverter ready | R | 0 ... Not ready 1 ... Ready |
| 0012h | 00018 | (Reserved) | R | - |
| 0013h | 00019 | RUN (running) | R | $0 \ldots \mathrm{OFF}$ |
| 0014h | 00020 | FA2 - Frequency Arrival (constant-speed reached) | R | $1 \ldots \mathrm{ON}$ |
| 0015h | 00021 | FA2 - Frequancy Arrival (above set frequency) | R |  |
| 0016h | 00022 | OL - Overload signal | R |  |
| 0017h | 00023 | OD - PID deviation signal | R |  |


| List of Coil Numbers |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Coil number |  | Name | R/W |  | Description |
| hex | dec. |  |  |  |  |
| 0018h | 00024 | AL - Alarm signal | R | $\begin{array}{\|l} 0 \ldots \text { OFF } \\ 1 \ldots \text { ON } \end{array}$ |  |
| 0019h | 00025 | FA3 - Frequency arrival signal (set frequency or above) | R |  |  |  |
| 001Ah | 00026 | OTQ - Over-torque | R |  |  |  |
| 001Bh | 00027 | IP - Instantaneous power failure | R |  |  |  |
| 001Ch | 00028 | UV - Uundervoltage | R |  |  |  |
| 001Dh | 00029 | TRQ - Torque limit | R |  |  |  |
| 001Eh | 00030 | RNT - Operation time over | R |  |  |  |
| 001Fh | 00031 | ONT - Plug-in time over | R |  |  |  |
| 0020h | 00032 | THM - Thermal alarm signal | R |  |  |  |
| 0021h | 00033 | (Reserved) | - |  | - |
| 0022h | 00034 | (Reserved) | - |  | - |
| 0023h | 00035 | (Reserved) | - |  | - |
| 0024h | 00036 | (Reserved) | - |  | - |
| 0025h | 00037 | (Reserved) | - |  | - |
| 0026h | 00038 | BRK - Brake release | R | $\begin{aligned} & \text { 0... OFF } \\ & \text { 1... ON } \end{aligned}$ |  |
| 0027h | 00039 | BER - Brake error | R |  |  |  |
| 0028h | 00040 | ZS - 0 Hz detection signal | R |  |  |  |
| 0029h | 00041 | DSE - Speed deviation maximum | R |  |  |  |
| 002Ah | 00042 | POK - Positioning completed | R |  |  |  |
| 002Bh | 00043 | FA4 - Set frequency overreached 2 | R |  |  |  |
| 002Ch | 00044 | FA5 - Set frequency reached 2 | R |  |  |  |
| 002Dh | 00045 | OL2 - Overload notice advance signal 2 | R |  |  |  |
| 002Eh | 00046 | Odc - Analog O disconnection detection | R |  |  |  |
| 002Fh | 00047 | OIDc - Analog OI disconnection detection | R |  |  |  |
| 0030h | 00048 | O2Dc - Analog O2 disconnection detection | R |  |  |  |
| 0031h | 00049 | (Reserved) | - |  | - |
| 0032h | 00050 | FBV - PID feedback comparison | R | $\begin{aligned} & \hline 0 \ldots \text { OFF } \\ & 1 \ldots \text { ON } \end{aligned}$ |  |
| 0033h | 00051 | NDc - Communication bus disconnection | R |  |  |
| 0034h | 00052 | LOG1 - Logical operation result 1 | R |  |  |

Note 1: ON usually when either the control circuit terminal board or a coil is ON. Among intelligent input terminals, the control circuit terminal board is a high-priority terminal. If the master cannot reset the coil ON status due to a transmission line break, turn ON and OFF the control circuit terminal board to make the coil OFF status.

Note 2: The content of a transmission error is held until the error is reset. (The error can be reset while the inverter is running.)

ModBus Holding Registers

The following tables list the holding registers for the inverter interface to the network. The table legend is given below.

- Function Code - The inverter's reference code for the parameter or function (same as inverter keypad display). Long-word values (32) bits are listed in two rows; " H " and "L" indicate the high and low order words.
- Name - The standard functional name of the parameter or function for the inverter
- R/W - The read-only or read-write access permitted to the data in the inverter
- Description - How the parameter or setting works (same as Chapter 3 description)
- Register - The network register address offset for the value, in hex and decimal. Actual network address is $40001+$ offset. Some values have a high-byte and low-byte address.
- Range - The numerical range for the network value that is sent and/or received

TIP: The network values are binary integers. Since these values cannot have an embedded decimal point, for many parameters it represents the actual value (in engineering units) multiplied by a factor of 10 or 100 . Network communications must use the listed range for network data. The inverter automatically divides received values by the appropriate factor in order to establish the decimal point for internal use. Likewise, the network host computer must apply the same factor when it needs to work in engineering units. However, when sending data to the inverter, the network host computer must scale values to the integer range listed for network communications.

- Resolution - This is the quantity represented by the LSB of the network value, in engineering units. When the network data range is greater than the inverter's internal data range, this 1-bit resolution will be fractional.

| Holding Registers, 'D' Group Monitor Functions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | R/W | Description | Network Data |  |  |  |
|  |  |  |  | Register |  | Range | Res. |
|  |  |  |  | hex | dec. |  |  |
| - | Inverter status A | R | $0=$ Initial status; $1=$ Waiting for Vdc level; 2 = Stoping; 3 = Running; $4=$ Free-run Stop (FRS); $5=$ Jogging; $6=$ DC Braking; $7=$ Freq. is input; $8=$ Retrying operation; $9=$ Undervoltage (UV) | 0003h | 00003 | 0 to 9 | - |
| - | Inverter status B | R | $\begin{aligned} & 0=\text { Stopping; } 1=\text { Running; } \\ & 2=\text { Tripping } \end{aligned}$ | 0004h | 00004 | 0,1,2 | - |
| - | Inverter status C | R | $0=---; 1=$ Stopping; $2=$ Decelerating; $3=$ Constant-speed operation; $4=$ Accelerating; $5=$ Forward rotation; $6=$ Reverse rotation; $7=$ Forward-to-reverse rotation transition; $9=$ Starting forward rotation; $10=$ Starting reverse rotation | 0005h | 00005 | 0 to 10 | - |
| - | PID feedback | R/W |  | 0006h | 00006 |  |  |
| - | (Reserved) | - | - | $\begin{aligned} & 0007 \mathrm{~h} \\ & \text { to } \\ & 0010 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & 00007 \\ & \text { to } \\ & 00016 \end{aligned}$ | - | - |


| Holding Registers, "D" Group Monitor Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| D001 | H |  | Output frequency monitor | R | Real-time display of output frequency to motor, from 0.0 to 400.0 Hz | 1001h | 04097 | 0 to 40000 | 0.01 Hz |
| D001 | L |  |  | R |  | 1002h | 04098 |  |  |
| D002 | - | Output current monitor | R | Filtered display of output current to motor ( 100 mS internal filter time constant) | 1003h | 04099 | 0 to 9999 | 0.01 A |  |
| D003 | - | Rotation direction monitor | R | 0 ...Stop <br> 1 ...Forward <br> 2 ...Reverse | 1004h | 04100 | 0, 1, 2 | - |  |
| D004 | H | Process variable (PV), PID feedback monitor | R | Displays the scaled PID process variable (feedback) value (A75 is scale factor) | 1005h | 04101 | 0 to 9990 | 0.1 |  |
| D004 | L |  | R |  | 1006h | 04102 |  |  |  |
| D005 | - | Intelligent input terminal status | R | Displays the state of the intelligent input terminals | 1007h | 04103 | $\begin{gathered} \text { bit } 0=[1] \text { bit } \\ 7=[8] \text { termi- } \\ \text { nals } \end{gathered}$ | 1 bit |  |
| D006 | - | Intelligent output terminal status | R | Displays the state of the intelligent input terminals | 1008h | 04101 | $\begin{aligned} & \text { bit0 }=[11] \\ & \text { bit } 4=[15] \\ & \text { terminals } \end{aligned}$ | 1 bit |  |
| D007 | H | Scaled output frequency monitor | R | Displays the output frequency scaled by the constant in B0086. <br> Decimal point indicates range: <br> XX.XX 0.00 to 99.99 <br> XXX.X 100.0 to 999.9 <br> XXXX. 1000 to 9999 <br> XXXX 10000 to 99990 | 1009h | 04105 | 0 to 39960 | 0.01 |  |
| D007 | L |  | R |  | 100Ah | 04106 |  |  |  |
| D008 | H | Actual frequency monitor | R | Displays the actual shaft speed of the motor, converted to frequency | 100Bh | 04107 | $\begin{aligned} & -40000 \text { to } \\ & +40000 \end{aligned}$ | 0.01 Hz |  |
| D008 | L |  | R |  | 100Ch | 04108 |  |  |  |
| D009 | - | Torque command monitor | R | Displays the level of the torque command when the inverter is set to torque control mode | 100Dh | 04109 | -200 to 200 | $1 \%$ |  |
| D010 | - | Torque bias monitor | R | Displays the level of the torque bias, if enabled, when the inverter is in vector control mode with feedback | 100Eh | 04110 | -200 to 200 | $1 \%$ |  |
| - | - | (Reserved) | R | - | 100Fh | 04111 | - | - |  |
| D012 | - | Torque monitor | R | Estimated output torque value, range is -300.0 to $+300.0 \%$ | 1010h | 04112 | -200 to 200 | $1 \%$ |  |
| D013 | - | Output voltage monitor | R | Voltage of output to motor, range is 0.0 to 600.0 V | 1012h | 04113 | 0 to 6000 | 0.1 V |  |
| D014 | - | Power monitor | R | Input power to inverter, range is 0.0 to 999.9 | 1013h | 04114 | 0 to 9999 | 0.1 kW |  |
| D015 | H | Cumulative power monitor | R | Displays cumulative input power to inverter; B079 selects the multiplier for units. Range is 0.0 to $999.9,1000$ to 9999 , or 100 to 999 | 1014h | 04115 | 0 to 9999999 | 0.1 |  |
| D015 | L |  | R |  | 1014h | 04116 |  |  |  |


| Holding Registers, "D" Group Monitor Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| D016 | H |  | Cumulative operation RUN time monitor | R | Displays total time the inverter has been in RUN mode in hours. Range is 0 to 9999 / 1000 to 9999/ 100 to 999 (10,000 to 99,900 ) hrs. | 1015h | 04117 | 0 to 999900 | 0.1 |
| D016 | L |  |  | R |  | 1016h | 04118 |  |  |
| $\begin{aligned} & \text { D017 } \\ & \text { (high) } \end{aligned}$ | H | Cumulative power-on time monitor | R | Displays total time the inverter has had input power (ON) in hours. Range is: 0 to 9999 / 100.0 to 999.9 / 1000 to 9999 / 100 to 999 hrs. | 1017h | 04119 | 0 to 999900 | 1 hour |  |
| D017 <br> (low) | L |  | R |  | 1018h | 04120 |  |  |  |
| D018 | - | Heat sink temperature monitor | R | Displays the temperature of the inverter's heat sink | 1019h | 04121 | -200 to 2000 | $0.1{ }^{\circ} \mathrm{C}$ |  |
| D019 | - | Motor temperature monitor | R | Displays motor internal temperature (requires an NTC thermistor installed in the motor and connected to [TH] and [CM1]) | 101Ah | 04122 | -200 to 2000 | $0.1{ }^{\circ} \mathrm{C}$ |  |
| - |  | (Reserved) | - | - | 101Bh | 04123 | - | - |  |
| - |  | (Reserved) | - | - | 101Ch | 04124 | - | - |  |
| D022 | - | Component life monitor | R | Displays estimated life status of DC bus capacitors and cooling fans | 101Dh | 04125 | bit 0 ... capacitors bit 1...fans | 1 bit |  |
| - |  | (Reserved) | - | - | $\begin{gathered} \text { 101Eh } \\ \text { to } \\ 1025 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 04126 \\ \text { to } \\ 04133 \end{gathered}$ | - | - |  |
| D025 | H | User monitor 0 | R | Displays state of internal EZ Sequence register User Monitor 0 | 102Eh | 04142 | $\begin{array}{\|c} \hline-2147483647 \\ \text { to } \\ 2147483647 \end{array}$ | 1 |  |
| D025 | L |  | R |  | 102Fh | 04143 |  |  |  |
| D026 | H | User monitor 1 | R | Displays state of internal EZ Sequence register User Monitor 2 | 1030h | 04144 | $\begin{array}{\|c} \hline-2147483647 \\ \text { to } \\ 2147483647 \end{array}$ | 1 |  |
| D026 | L |  | R |  | 1031h | 04145 |  |  |  |
| D027 | H | User monitor 2 | R | Displays state of internal EZ Sequence register User Monitor 2 | 1032h | 04146 | $\begin{gathered} -2147483647 \\ \text { to } \\ 2147483647 \end{gathered}$ | 1 |  |
| D027 | L |  | R |  | 1033h | 04147 |  |  |  |
| D028 | H | Pulse counter | R/W | Displays accumulated pulse count of [PCNT] intelligent input terminal (option code 74) | 1034h | 04148 | $\begin{gathered} 0 \text { to } \\ 2147483647 \end{gathered}$ | 1 |  |
| D028 | L |  | R/W |  | 1035h | 04149 |  |  |  |
| D029 | H | Position setting monitor | R | Displays absolute position command for motor shaft in absolute position control mode | 1036h | 04150 | $\begin{gathered} -2147483647 \\ \text { to } \\ 2147483647 \end{gathered}$ | 1 |  |
| D029 | L |  | R |  | 1037h | 04151 |  |  |  |
| D030 | H | Position feedback monitor | R | Displays absolute position of motor shaft when in absolute position control mode | 1038h | 04152 | $\begin{gathered} -2147483647 \\ \text { to } \\ 2147483647 \end{gathered}$ | 1 |  |
| D030 | L |  | R |  | 1039h | 04153 |  |  |  |
| D080 | - | Trip counter | R | Number of trip events | 0011h | 00017 | 0 to 65535 | $1 \text { trip }$ event |  |


| Holding Registers, "D" Group Monitor Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| D081 | - |  | Trip monitor 1 | R | Factor code | 0012h | 00018 | (see codes in next table) | - |
|  |  |  |  | R | Inverter status | 0013h | 00019 |  | - |
|  |  | R |  | Frequency (high) | 0014h | 00020 | 0 to 40000 | 0.01 Hz |
|  |  | R |  | Frequency (low) | 0015h | 00021 |  |  |
|  |  | R |  | Current | 0016h | 00022 | - | 0.1 A |
|  |  | R |  | Voltage | 0017h | 00023 | - | 1 V |
|  |  | R |  | Run time (high) | 0018h | 00024 | - | 1 hour |
|  |  | R |  | Run time (low) | 0019h | 00025 |  |  |
|  |  | R |  | ON time (high) | 001Ah | 00026 | - | 1 hour |
|  |  | R |  | ON time (low) | 001Bh | 00027 |  |  |
| D082 | - | Trip monitor 2 | R | Factor code | 001Ch | 00028 | (see codes in next table) | - |
|  |  |  | R | Inverter status | 001Dh | 00029 |  | - |
|  |  |  | R | Frequency (high) | 001Eh | 00030 | 0 to 40000 | 0.01 Hz |
|  |  |  | R | Frequency (low) | 001Fh | 00031 |  |  |
|  |  |  | R | Current | 0020h | 00032 | - | 0.1 A |
|  |  |  | R | Voltage | 0021h | 00033 | - | 1 V |
|  |  |  | R | Run time (high) | 0022h | 00034 | - | 1 hour |
|  |  |  | R | Run time (low) | 0023h | 00035 |  |  |
|  |  |  | R | ON time (high) | 0024h | 00036 | - | 1 hour |
|  |  |  | R | ON time (low) | 0025h | 00037 |  |  |
| D083 | - | Trip monitor 3 | R | Factor code | 0026h | 00038 | (see codes in next table) | - |
|  |  |  | R | Inverter status | 0027h | 00039 |  | - |
|  |  |  | R | Frequency (high) | 0028h | 00040 | 0 to 40000 | 0.01 Hz |
|  |  |  | R | Frequency (low) | 0029h | 00041 |  |  |
|  |  |  | R | Current | 002Ah | 00042 | - | 0.1 A |
|  |  |  | R | Voltage | 002Bh | 00043 | - | 1 V |
|  |  |  | R | Run time (high) | 002Ch | 00044 | - | 1 hour |
|  |  |  | R | Run time (low) | 002Dh | 00045 |  |  |
|  |  |  | R | ON time (high) | 002Eh | 00046 | - | 1 hour |
|  |  |  | R | ON time (low) | 002Fh | 00047 |  |  |


| Holding Registers, "D" Group Monitor Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| D084 | - |  | Trip monitor 4 | R | Factor code | 0030h | 00048 | (see codes in next table) | - |
|  |  |  |  | R | Inverter status | 0031h | 00049 |  | - |
|  |  | R |  | Frequency (high) | 0032h | 00050 | 0 to 40000 | 0.01 Hz |
|  |  | R |  | Frequency (low) | 0033h | 00051 |  |  |
|  |  | R |  | Current | 0034h | 00052 | - | 0.1 A |
|  |  | R |  | Voltage | 0035h | 00053 | - | 1 V |
|  |  | R |  | Run time (high) | 0036h | 00054 | - | 1 hour |
|  |  | R |  | Run time (low) | 0037h | 00055 |  |  |
|  |  | R |  | ON time (high) | 0038h | 00056 | - | 1 hour |
|  |  | R |  | ON time (low) | 0039h | 00057 |  |  |
| D085 | - | Trip monitor 5 | R | Factor code | 003Ah | 00058 | (see codes in next table) | - |
|  |  |  | R | Inverter status | 003Bh | 00059 |  | - |
|  |  |  | R | Frequency (high) | 003Ch | 00060 | 0 to 40000 | 0.01 Hz |
|  |  |  | R | Frequency (low) | 003Dh | 00061 |  |  |
|  |  |  | R | Current | 003Eh | 00062 | - | 0.1 A |
|  |  |  | R | Voltage | 003 Fh | 00063 | - | 1 V |
|  |  |  | R | Run time (high) | 0040h | 00064 | - | 1 hour |
|  |  |  | R | Run time (low) | 0041h | 00065 |  |  |
|  |  |  | R | ON time (high) | 0042h | 00066 | - | 1 hour |
|  |  |  | R | ON time (low) | 0043h | 00067 |  |  |
| D086 | - | Trip monitor 6 | R | Factor code | 0044h | 00068 | (see codes in next table) | - |
|  |  |  | R | Inverter status | 0045h | 00069 |  | - |
|  |  |  | R | Frequency (high) | 0046h | 00070 | 0 to 40000 | 0.01 Hz |
|  |  |  | R | Frequency (low) | 0047h | 00071 |  |  |
|  |  |  | R | Current | 0048h | 00072 | - | 0.1 A |
|  |  |  | R | Voltage | 0049h | 00073 | - | 1 V |
|  |  |  | R | Run time (high) | 004Ah | 00074 | - | 1 hour |
|  |  |  | R | Run time (low) | 004Bh | 00075 |  |  |
|  |  |  | R | ON time (high) | 004Ch | 00076 | - | 1 hour |
|  |  |  | R | ON time (low) | 004Dh | 00077 |  |  |
| D090 | - | Programming error monitor | R | Displays programming error code | 004Eh | 00078 | Warning code | - |
| - |  | (Reserved) | - | - | $\begin{aligned} & 004 \mathrm{Fh} \\ & \text { to } \\ & 08 \mathrm{FFh} \end{aligned}$ | $\begin{gathered} 00079 \\ \text { to } \\ 02303 \end{gathered}$ | - | - |


| Holding Registers, "D" Group Monitor Functions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | R/W | Description | Network Data |  |  |  |
|  |  |  |  | Register |  | Range | Res. |
|  |  |  |  | hex | dec. |  |  |
| - - | Write to EEPROM | W | 00 .Motor constant calculation <br> 01 . Set data storage in EEPROM <br> Other... Motor constant recalculation and set data storage in EEPROM | 0900h | 02304 | 0000, 0001, other | - |
| - | (Reserved) | - | - | $\begin{gathered} \text { 0901h } \\ \text { to } \\ 1000 \mathrm{~h} \end{gathered}$ | $\begin{gathered} \hline 02305 \\ \text { to } \\ 4096 \end{gathered}$ | - | - |
| D102 | DC voltage monitoring |  | Displays the DC Bus voltage | 1026h | 04134 | 0 to 9999 | 0.1 V |
| D103 | BRD load factor monitoring |  | Displays the running average Dynamic Braking usage ratio (\%ED) | 1027h | 04135 | 0 to 1000 | 0.1 \% |
| D104 | Electronic thermal overload monitoring |  | Displays the motor electronic thermal overload estimated temperature ratio. If the value reaches $100 \%$, the inverter will trip (E05) | 1028h | 04136 | 0 to 1000 | 0.1 \% |
| - | (Reserved) | - | - | $\begin{aligned} & 1029 \mathrm{~h} \\ & \text { to } \\ & \text { 102Dh } \end{aligned}$ | $\begin{gathered} 04137 \\ \text { to } \\ 04141 \end{gathered}$ | - | - |

Note 1: Assume that the inverter current rating is 1000 (for D002).
Note 2: When the value is 10000 ( 100.0 seconds), a value in the second decimal place is ignored.

| Holding Registers, "F" Group Main Profile Parameters |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| F001 | H |  | Output frequency setting | R/W | Standard default target frequency that determines constant motor speed $($ when $\mathrm{A} 001=03)$ | 0001h | 00001 | 0 to 40000 | 0.01 Hz |
| F001 | L |  |  | R/W |  | 0002h | 00002 |  |  |
| F002 | H | Acceleration (1) time setting | R/W | Standard default acceleration | 1103h | 04355 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |  |
| F002 | L |  | R/W |  | 1104h | 04356 |  |  |  |
| F202 | H | Acceleration (1) time setting, 2nd motor | R/W | Standard default acceleration, 2nd motor | 2103h | 08451 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |  |
| F202 | L |  | R/W |  | 2104h | 08452 |  |  |  |
| F302 | H | Acceleration (1) time setting, 3rd motor | R/W | Standard default acceleration, 3rd motor | 3103h | 12547 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |  |
| F302 | L |  | R/W |  | 3104h | 12548 |  |  |  |
| F003 | H | Deceleration (1) time setting | R/W | Standard default deceleration | 1105h | 04357 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |  |
| F003 | L |  | R/W |  | 1106h | 04358 |  |  |  |
| F203 | H | Deceleration (1) time setting, 2nd motor | R/W | Standard default deceleration, 2nd motor | 2105h | 08453 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |  |
| F203 | L |  | R/W |  | 2106h | 08454 |  |  |  |
| - | - | (Reserved) | - | - | $\begin{gathered} 2107 \mathrm{~h} \\ \text { to } \\ 2202 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 08455 \\ \text { to } \\ 08706 \end{gathered}$ | - | - |  |
| F303 | H | Deceleration (1) time setting, 3rd motor | R/W | Standard default deceleration, 3rd motor | 3105h | 12549 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |  |
| F303 | L |  | R/W |  | 3106h | 12550 |  |  |  |
| - | - | (Reserved) | - | - | $\begin{gathered} 3107 \mathrm{~h} \\ \text { to } \\ 3202 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 12551 \\ \text { to } \\ 12802 \end{gathered}$ | - | - |  |
| F004 | - | Keypad Run key routing | R/W |  | 1107h | 04359 |  |  |  |
| - | - | (Reserved) | - | - | $\begin{gathered} 1108 \mathrm{~h} \\ \text { to } \\ 1200 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 04360 \\ \text { to } \\ 04608 \end{gathered}$ | - | - |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| A001 | - |  | Frequency source setting | R/W | 00 . Keypad potentiometer <br> 01 . Control terminal <br> 02 . Function F001 setting <br> 03. RS485 serial command <br> 04. Expansion board \#1 <br> 05. Expansion board \#2 <br> 06 . Pulse train input <br> 07. Easy sequence <br> 10. Caltulate function input | 1201h | 04609 | $\begin{gathered} 00 \text { to } 07, \\ 10 \end{gathered}$ | - |
| A002 | - |  | Run command source setting | R/W | 01 . Input [FW] or [RV] 02 . Run key on keypad 03. RS485 serial command 04. Start/stop, Exp. card \#1 05. Start/stop. exp. card \#2 | 1202h | 04610 | 01 to 05 | - |
| A003 | - | Base frequency setting | R/W | 30. to max. frequency ( Hz ) | 1203h | 04611 | $\begin{gathered} 30 \text { to } \\ \text { A004 val. } \end{gathered}$ | 1 Hz |
| A203 | - | Base frequency setting, 2nd motor | R/W | 30. to max. frequency (Hz) | 2203h | 08707 | $\begin{gathered} 30 \text { to } \\ \text { A004 val. } \end{gathered}$ | 1 Hz |
| A303 | - | Base frequency setting, 3rd motor | R/W | 30. to max. frequency (Hz) | 3203h | 12803 | $\begin{gathered} 30 \text { to } \\ \text { A004 val. } \end{gathered}$ | 1 Hz |
| A004 | - | Maximum frequency setting | R/W | 30. to 400. (Hz) | 1204h | 04612 | 30 to 400 | 1 Hz |
| A204 | - | Maximum frequency setting, 2nd motor | R/W | 30. to 400. (Hz) | 2204h | 08708 | 30 to 400 | 1 Hz |
| - |  | (Reserved) | - | - | $\begin{gathered} 2205 \mathrm{~h} \\ \text { to } \\ 2215 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 08709 \\ \text { to } \\ 08725 \end{gathered}$ | - | - |
| A304 | - | Maximum frequency setting, 3rd motor | R/W | 30. to 400. (Hz) | 3204h | 12804 | 30 to 400 | 1 Hz |
| - |  | (Reserved) | - | - | $\begin{gathered} 3205 \mathrm{~h} \\ \text { to } \\ 3215 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 12805 \\ \text { to } \\ 12821 \end{gathered}$ | - | - |
| A005 | - | [AT] selection | R/W | 00 . Select between $[\mathrm{O}]$ and [OI] at [AT] <br> 01 . Select between $[\mathrm{O}]$ and [O2] at [AT] <br> 02 . Select between $[\mathrm{O}]$ and keypad pot. <br> 03 . Select between [OI] and keypad pot. <br> 04 . Select between [O2] and keypad pot. | 1205h | 04613 | 00 to 04 | - |
| A006 | - | [O2] selection | R/W | 00 . No summing, [O2] and [OI] <br> 01 . Sum of [O2] and [OI], neg. sum (reverse speed reference) inhibited <br> 02 . Sum of [O2] and [OI], neg. sum (reverse speed reference) allowed <br> 03. Disable [O2] input | 1206h | 046 | 00 to 03 | - |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 1207 \mathrm{~h} \\ \text { to } \\ 120 \mathrm{Ah} \end{gathered}$ | $\begin{gathered} \hline 04614 \\ \text { to } \\ 04618 \end{gathered}$ | - | - |
| A011 | H |  | [O]-[L] input active range start frequency | R/W | The output frequency corresponding to the voltage input range starting point | 120Bh | 04619 | 0 to 40000 | 0.01 Hz |
| A011 | L | 120Ch |  |  |  | 04620 |  |  |
| A012 | H | [O]-[L] input active range end frequency | R/W | The output frequency corresponding to the voltage input range ending point | 120Dh | 04621 | 0 to 40000 | 0.01 Hz |  |
| A012 | L |  |  |  | 120Eh | 04622 |  |  |  |
| A013 | - | [O]-[L] input active range start voltage | R/W | The starting point for the voltage input range | 120Fh | 04623 | $0 \text { to A014 }$ value | $1 \%$ |  |
| A014 | - | [O]-[L] input active range end voltage | R/W | The ending point for the voltage input range | 1210h | 04624 | A013 value to 100 | $1 \%$ |  |
| A015 | - | [O]-[L] input start frequency enable | R/W | 00..Use A011 start value $01 . . U s e 0 \mathrm{~Hz}$ | 1211h | 04625 | 0,1 | - |  |
| A016 | - | External frequency filter time const. | R/W | $\mathrm{n}=1$ to 30 (where $\mathrm{n}=$ number of samples for average); $31=500 \mathrm{~ms}$ filter | 1212h | 04626 | 1 to 30, 31 | 1 |  |
| A017 | - | Easy sequence function enable | R/W | 00..Disable <br> 01..Enable | 1213h | 04627 | 0,1 | - |  |
| - |  | (Reserved) | - | - | 1214h | 04628 | - | - |  |
| A019 | - | Multi-speed operation selection | R/W | 00..Binary; up to 16 -stage speed using 4 terminals 01 ..Single-bit; up to 8 -stage speed using 7 terminals | 1215h | 04629 | 0,1 | - |  |
| A020 | H | Multi-speed frequency setting | R/W | Defines the first speed of a multi-speed profile | 1216h | 04630 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A020 | L |  |  |  | 1217h | 04631 |  |  |  |
| A220 | H | Multi-speed frequency setting, 2nd motor | R/W | Defines the first speed of a multi-speed profile for 2nd motor | 2216h | 08726 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A220 | L |  |  |  | 2217h | 08727 |  |  |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 2218 \mathrm{~h} \\ \text { to } \\ 223 \mathrm{Ah} \end{gathered}$ | $\begin{gathered} 08728 \\ \text { to } \\ 08762 \end{gathered}$ | - | - |  |
| A320 | H | Multi-speed frequency setting, 3rd motor | R/W | Defines the first speed of a multi-speed profile for 3rd motor | 3216h | 12822 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A320 | L |  |  |  | 3217h | 12823 |  |  |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 3218 \mathrm{~h} \\ \text { to } \\ 323 \mathrm{Bh} \end{gathered}$ | $\begin{gathered} 12824 \\ \text { to } \\ 12859 \end{gathered}$ | - | - |  |
| A021 | H | Multi-speed 1 setting | R/W | Defines nth additional speed | 1218h | 04632 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A021 | L |  |  |  | 1219h | 04633 |  |  |  |
| A022 | H | Multi-speed 2 setting | R/W | Defines nth additional speed | 121Ah | 04634 | 0 or start freq. to max. freq | 0.01 Hz |  |
| A022 | L |  |  |  | 121Bh | 04635 |  |  |  |
| A023 | H | Multi-speed 3 setting | R/W | Defines nth additional speed | 121 Ch | 04636 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A023 | L |  |  |  | 121Dh | 04637 |  |  |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| A024 | H |  | Multi-speed 4 setting | R/W | Defines nth additional speed | 121Eh | 04638 | 0 or start freq. to max. freq. | 0.01 Hz |
| A024 | L |  |  |  |  | 121Fh | 04639 |  |  |
| A025 | H | Multi-speed 5 setting | R/W | Defines nth additional speed | 1220h | 04640 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A025 | L |  |  |  | 1221h | 04641 |  |  |  |
| A026 | H | Multi-speed 6 setting | R/W | Defines nth additional speed | 1222h | 04642 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A026 | L |  |  |  | 1223h | 04643 |  |  |  |
| A027 | H | Multi-speed 7 setting | R/W | Defines nth additional speed | 1224h | 04644 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A027 | L |  |  |  | 1225h | 04645 |  |  |  |
| A028 | H | Multi-speed 8 setting | R/W | Defines nth additional speed | 1226h | 04646 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A028 | L |  |  |  | 1227h | 04647 |  |  |  |
| A029 | H | Multi-speed 9 setting | R/W | Defines nth additional speed | 1228h | 04648 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A029 | L |  |  |  | 1229h | 04649 |  |  |  |
| A030 | H | Multi-speed 10 setting | R/W | Defines nth additional speed | 122Ah | 04650 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A030 | L |  |  |  | 122Bh | 04651 |  |  |  |
| A031 | H | Multi-speed 11 setting | R/W | Defines nth additional speed | 122Ch | 04652 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A031 | L |  |  |  | 122Dh | 04653 |  |  |  |
| A032 | H | Multi-speed 12 setting | R/W | Defines nth additional speed | 122Eh | 04654 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A032 | L |  |  |  | 122Fh | 04655 |  |  |  |
| A033 | H | Multi-speed 13 setting | R/W | Defines nth additional speed | 1230h | 04656 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A033 | L |  |  |  | 1231h | 04657 |  |  |  |
| A034 | H | Multi-speed 14 setting | R/W | Defines nth additional speed | 1232h | 04658 | 0 or start freq. to max. freq. | 0.01 Hz |  |
| A034 | L |  |  |  | 1233h | 04659 |  |  |  |
| A035 | H | Multi-speed 15 setting | R/W | Defines nth additional speed | 1234h | 04660 | 0 or start freq. to max. freq | 0.01 Hz |  |
| A035 | L |  |  |  | 1235h | 04661 |  |  |  |
| - |  | (Reserved) | - | - | 1236h | 04662 | - | - |  |
| - |  | (Reserved) | - | - | 1237h | 04663 | - | - |  |
| A038 | - | Jog frequency setting | R/W | Defines limited speed for jog | 1238h | 04664 | 0 to 999 | 0.01 Hz |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| A039 | - |  | Jog stop mode | R/W | 00..Free-run stop, jogging disabled during motor run <br> 01 ..Controlled deceleration, jogging disabled during motor run <br> 02 ..DC braking to stop, jogging disabled during motor run <br> 03..Free-run stop, jogging always enabled <br> 04..Controlled deceleration, jogging always enabled <br> 05 ..DC braking to stop, jogging always enabled | 1239h | 04665 | 0 to 5 | - |
| - |  |  | (Reserved) | - | - | 123Ah | 04666 | - | - |
| A041 | - | Torque boost method selection | R/W | 00..Manual torque boost 01..Automatic torque boost | 123Bh | 04667 | 0,1 | - |
| A241 | - | Torque boost method selection, 2nd motor | R/W | 00..Manual torque boost 01..Automatic torque boost | 223Bh | 08763 | 0,1 | - |
| A042 | - | Manual torque boost value | R/W | Can boost starting torque between 0 and $20 \%$ above normal V/f curve | 123Ch | 04668 | 0 to 200 | 0.1 \% |
| A242 | - | Manual torque boost value, 2nd motor | R/W | Can boost starting torque between 0 and $20 \%$ above normal V/f curve | 223 Ch | 08764 | 0 to 200 | 0.1 \% |
| A342 | - | Manual torque boost value, 3rd motor | R/W | Can boost starting torque between 0 and $20 \%$ above normal V/f curve | 323 Ch | 12860 | 0 to 200 | 0.1 \% |
| A043 | - | Manual torque boost frequency adjustment | R/W | Sets the frequency of the V/f breakpoint for torque boost | 123Dh | 04669 | 0 to 500 | 0.1 \% |
| A243 | - | Manual torque boost frequency adjustment, 2nd motor | R/W | Sets the frequency of the V/f breakpoint for torque boost | 223Dh | 08765 | 0 to 500 | 0.1 \% |
| A343 | - | Manual torque boost frequency adjustment, 3rd motor | R/W | Sets the frequency of the V/f breakpoint for torque boost | 323Dh | 12861 | 0 to 500 | 0.1 \% |
| A044 | - | V/F characteristic curve selection | R/W | 00..V/f constant torque 01..V/f variable torque 02..V/f free-setting curve 03..Sensorless vector SLV $04 . .0 \mathrm{~Hz}$ domain SLV 05 ..Vector control with encoder feedback | 123Eh | 04670 | 0 to 5 | - |
| A244 | - | V/F characteristic curve selection, 2nd motor | R/W | 00..V/f constant torque 01..V/f variable torque 02..V/f free-setting curve 03..Sensorless vector SLV $04 . .0 \mathrm{~Hz}$ domain SLV | 223Eh | 08766 | 0 to 4 | - |
| - |  | (Reserved) | - | - | 223Fh | 08767 | - | - |
| A344 |  | V/F characteristic curve selection, 3rd motor | R/W | 00..V/f constant torque 01..V/f variable torque | 323Eh | 12862 | 0, 1 | - |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 323 \mathrm{Fh} \\ \text { to } \\ 326 \mathrm{Ch} \end{gathered}$ | $\begin{gathered} 12863 \\ \text { to } \\ 12908 \end{gathered}$ | - | - |
| A045 | - |  | V/f gain setting | R/W | Sets voltage gain of the inverter | 123Fh | 04671 | 20 to 200 | $1 \%$ |
| A046 | - | Automatic torque boost voltage gain | R/W | Voltage compensation gain for automatic torque boost | 1240h | 04672 | 0 to 255 | 1 |
| A246 | - | Automatic torque boost voltage gain, 2nd motor | R/W | Voltage compensation gain for automatic torque boost | 2240h | 08768 | 0 to 255 | 1 |
| A047 | - | Automatic torque boost slip gain | R/W | Slip compensation gain for automatic torque boost | 1241h | 04673 | 0 to 255 | 1 |
| - |  | (Reserved) | - | - | $\begin{gathered} 1242 \mathrm{~h} \\ \text { to } \\ 1244 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 04674 \\ \text { to } \\ 04676 \end{gathered}$ | - | - |
| A247 | - | Automatic torque boost slip gain, 2nd motor |  | Slip compensation gain for automatic torque boost | 2241h | 08769 | 0 to 255 | 1 |
| - |  | (Reserved) | - | - | $\begin{gathered} 2242 \mathrm{~h} \\ \text { to } \\ 224 \mathrm{Eh} \end{gathered}$ | $\begin{gathered} 08770 \\ \text { to } \\ 08782 \end{gathered}$ | - | - |
| A051 | - | DC braking enable | R/W | 00 . Disable <br> 01 . Enable <br> 02 . Brake at set frequency only | 1245h | 04677 | 0, 1, 2 | - |
| A052 | - | DC braking frequency setting | R/W | Frequency at which DC braking activates during decel. | 1246h | 04678 | 0 to 40000 | 0.01 Hz |
| A053 | - | DC braking wait time | R/W | The delay after reaching the DC braking frequency, or [DB] signal, before DC braking begins | 1247h | 04679 | 0 to 50 | 0.1 sec . |
| A054 | - | DC braking force during deceleration | R/W | Variable DC braking force | 1248h | 04680 | 0 to 80 | 1\% |
| A055 | - | DC braking time for deceleration | R/W | Sets the duration for DC braking during decel | 1249h | 04681 | 0 to 600 | 0.1 sec . |
| A056 | - | DC braking / edge or level detection for [DB] input | R/W | 00 . Edge detection 01 . Level detection | 124Ah | 04682 | 0,1 | - |
| A057 | - | DC braking force for starting | R/W | Variable DC braking force | 124Bh | 04683 | 0 to 80 | 1\% |
| A058 | - | DC braking time for starting | R/W | Sets the duration for DC braking before accel. | 124 Ch | 04684 | 0 to 600 | 0.1 sec . |
| A059 | - | DC braking carrier frequency setting | R/W | 0.5 to $15(\mathrm{kHz})$ for models up to $-550 \mathrm{xxx}, 0.5$ to 10 (kHz) for 750xxx to 1500xxx models | 124Dh | 04685 | $\begin{aligned} & 5 \text { to } 150 ; \\ & 5 \text { to } 100 \end{aligned}$ | 0.1 kHz |
| - |  | (Reserved) | - | - | 124Eh | 04686 | - | - |
| A061 | H | Frequency upper limit setting | R/W | Sets a limit on output frequency less than the maximum frequency (A004) | 124Fh | 04687 | $\begin{gathered} 0,50 \text { to } \\ 40000 \end{gathered}$ | 0.01 Hz |
| A061 | L |  |  |  | 1250h | 04688 |  |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| A261 | H |  | Frequency upper limit setting, 2nd motor | R/W | Sets a limit on output frequency less than the maximum frequency (A004) | 224Fh | 08783 | $\begin{gathered} 0,50 \text { to } \\ 40000 \end{gathered}$ | 0.01 Hz |
| A261 | L |  |  | R/W |  | 2250h | 08784 |  |  |
| A062 | H | Frequency lower limit setting | R/W | Sets a limit on output frequency greater than zero | 1251h | 04689 | $\begin{gathered} 0,50 \text { to } \\ 40000 \end{gathered}$ | 0.01 Hz |  |
| A062 | L |  | R/W |  | 1252h | 04690 |  |  |  |
| A262 | H | Frequency lower limit setting, 2nd motor | R/W | Sets a limit on output frequency greater than zero | 2251h | 08785 | $\begin{gathered} 0,50 \text { to } \\ 40000 \end{gathered}$ | 0.01 Hz |  |
| A262 | L |  | R/W |  | 2252h | 08786 |  |  |  |
| - | - | (Reserved) | - | - | 2253h <br> to 226Eh |  | - | - |  |
| A063 | H | Jump (center) frequency setting | R/W | Up to 3 output frequencies can be defined for the output to jump past to avoid motor resonances (center freq.) | 1253h | 04691 | 0 to 40000 | 0.01 Hz |  |
| A063 | L |  | R/W |  | 1254h | 04692 |  |  |  |
| A064 | - | Jump (hysteresis) frequency width setting | R/W | Defines the distance from the center frequency at which the jump occurs | 1255h | 04693 | 0 to 1000 | 0.01 Hz |  |
| A065 | H | Jump (center) frequency setting | R/W | Up to 3 output frequencies can be defined for the output to jump past to avoid motor resonances (center freq.) | 1256h | 04694 | 0 to 40000 | 0.01 Hz |  |
| A065 | L |  | R/W |  | 1257h | 04695 |  |  |  |
| A066 | - | Jump (hysteresis) frequency width setting | R/W | Defines the distance from the center frequency at which the jump occurs | 1258h | 04696 | 0 to 1000 | 0.01 Hz |  |
| A067 | H | Jump (center) frequency setting | R/W | Up to 3 output frequencies can be defined for the output to jump past to avoid motor resonances (center freq.) | 1259h | 04697 | 0 to 40000 | 0.01 Hz |  |
| A067 | L |  | R/W |  | 125Ah | 04698 |  |  |  |
| A068 | - | Jump (hysteresis) frequency width setting | R/W | Defines the distance from the center frequency at which the jump occurs | 125Bh | 04699 | 0 to 1000 | 0.01 Hz |  |
| A069 | H | Acceleration stop frequency setting | R/W | 0.00 to 400.0 (Hz) | 125Ch | 04700 | 0 to 40000 | 0.01 Hz |  |
| A069 | L |  | R/W |  | 125Dh | 04701 |  |  |  |
| A070 | - | Acceleration stop time frequency setting | R/W | 0.0 to 60.0 (seconds) | 125Eh | 04702 | 0 to 600 | 0.1 sec . |  |
| A071 | - | PID Function Enable | R/W | 00..PID operation OFF <br> 01..PID operation ON <br> 02..PID operation ON with inverted output | 125Fh | 04703 | 0, 1, 2 | - |  |
| A072 | - | PID proportional gain | R/W | 0.2 to 5.0 | 1260h | 0474 | 2 to 50 | 0.2 |  |
| A073 | - | PID integral time constant | R/W | 0.0 to $999.9,1000$. to 3600 . (seconds) | 1261h | 04705 | 0 to 36000 | 0.1 sec . |  |
| A074 | - | PID derivative gain | R/W | 0.0 to $99.99,100.0$ (seconds) | 1262h | 04706 | 0 to 10000 | 0.01 sec . |  |
| A075 | - | PV scale conversion | R/W | $\begin{aligned} & 0.01 \text { to } 99.99,100.0 \\ & \text { (seconds) } \end{aligned}$ | 1263h | 04707 | 1 to 9999 | 0.01 |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| A076 | - |  | PV source setting | R/W | 00 . [OI] (current input) <br> 01. [O] (voltage input) <br> 02 . Communication input <br> 03 . Pulse train freq. input <br> 10. Calculate function output | 1264h | 04708 | 0 to 3, 10 | - |
| A077 | - |  | Reverse PID action | R/W | $\begin{aligned} & 00 . \mathrm{PID} \text { input }=\mathrm{SP}-\mathrm{PV} \\ & \text { (normal) } \\ & 01 . \mathrm{PID} \text { input }=-(\mathrm{SP}-\mathrm{PV}) \\ & \text { (reverse) } \end{aligned}$ | 1265h | 04709 | 0,1 | - |
| A078 | - | PID output limit | R/W | Range is 0.0 to 100.0 | 1266h | 04710 | 0 to 1000 | 0.1 sec . |
| A079 | - | PID feed forward select | R/W | 00 . Disable <br> 01.[O] (voltage input) <br> 02 . [OI] (current input) <br> 03.[O2] (voltage input) | 1267h | 04711 | 0 to 3 | - |
| - |  | (Reserved) | - | - | 1268h | 04712 | - | - |
| A081 | - | AVR function select | R/W | 00 . AVR enabled <br> 01. AVR disabled <br> 02 . AVR enabled except during deceleration | 1269h | 04713 | 0, 1, 2 | - |
| A082 | - | AVR voltage select | R/W | 200V class inverter settings: 200/215/220/230/240 (V) 400 V class inverter settings: 380/400/415/440/460/480 (V) | 126Ah | 04714 | - | - |
| - |  | (Reserved) | - | - | 126Bh | 04715 | - | - |
| - |  | (Reserved) | - | - | 126Ch | 04716 | - | - |
| A085 | - | Operation mode selection | R/W | 00 . Normal operation <br> 01 . Energy-saver operation <br> 02 . Optimal accel/decel operation | 126Dh | 04717 | 0, 1, 2 | - |
| A086 | - | Energy saving mode tuning | R/W | 0.0 to 100 (seconds) | 126Eh | 04718 | 0 to 1000 | 0.1 \% |
| - |  | (Reserved) | - | - | $\begin{gathered} 126 \mathrm{Fh} \\ \text { to } \\ 1273 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 04719 \\ \text { to } \\ 04723 \end{gathered}$ | - | - |
| A092 | H | Acceleration (2) time setting | R/W | Duration of 2nd segment of acceleration | 1274h | 04724 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |
| A092 | L |  | R/W |  | 1275h | 04725 |  |  |
| A292 | H | Acceleration (2) time setting, 2nd motor | R/W | Duration of 2 nd segment of acceleration, 2nd motor | 226Fh | 08815 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |
| A292 | L |  | R/W |  | 2270h | 08816 |  |  |
| A392 | H | Acceleration (2) time setting, 3rd motor | R/W | Duration of 2nd segment of acceleration, 3rd motor | 326 Dh | 12909 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |
| A392 | L |  | R/W |  | 326Eh | 12910 |  |  |
| A093 | H | Deceleration (2) time setting | R/W | Duration of 2nd segment of deceleration | 1276h | 04726 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |
| A093 | L |  | R/W |  | 1277h | 04727 |  |  |
| A293 | H | Deceleration (2) time setting, 2nd motor | R/W | Duration of 2nd segment of deceleration, 2nd motor | 2271h | 08817 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |
| A293 | L |  | R/W |  | 2272h | 08818 |  |  |
| A393 | H | Deceleration (2) time setting, 3rd motor | R/W | Duration of 2nd segment of deceleration, 3rd motor | 326Fh | 12911 | $\begin{gathered} 1 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec . |
| A393 | L |  | R/W |  | 3270h | 12912 |  |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 3271 \mathrm{~h} \\ \text { to } \\ 330 \mathrm{Bh} \end{gathered}$ | $\begin{gathered} 12913 \\ \text { to } \\ 13067 \end{gathered}$ | - | - |
| A094 | - |  | Select method to switch to Acc2/Dec2 profile | R/W | 00 .. 22 CH ] terminal input 01..transition frequency 02..when motor direction reverses | 1278h | 04728 | 0, 1, 2 | - |
| A294 | - | Select method to switch to Acc2/Dec2, 2nd motor | R/W | 00 .. 2 CH ] terminal input 01 ..transition frequency 02..when motor direction reverses | 2273h | 08819 | 0, 1, 2 | - |
| A095 | H | Acc1 to Acc2 frequency transition point | R/W | Output frequency at which Accel1 switches to Accel2 | 1279h | 04729 | 0 to 40000 | 0.01 Hz |
| A095 | L |  | R/W |  | 127Ah | 04730 |  |  |
| A295 | H | Acc1 to Acc2 frequency transition point, 2nd motor | R/W | Output frequency at which Accel1 switches to Accel2 | 2274h | 08820 | 0 to 40000 | 0.01 Hz |
| A295 | L |  | R/W |  | 2275h | 08821 |  |  |
| A096 | H | Dec1 to Dec2 frequency transition point | R/W | Output frequency at which Decel1 switches to Decel2 | 127Bh | 04731 | 0 to 40000 | 0.01 Hz |
| A096 | L |  | R/W |  | 127Ch | 04732 |  |  |
| A296 | H | Dec1 to Dec2 frequency transition point, 2nd motor | R/W | Output frequency at which Decel1 switches to Decel2 | 2276h | 08822 | 0 to 40000 | 0.01 Hz |
| A296 | L |  | R/W |  | 2277h | 08823 |  |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 2278 \mathrm{~h} \\ \text { to } \\ 230 \mathrm{Bh} \end{gathered}$ | $\begin{gathered} 08824 \\ \text { to } \\ 08971 \end{gathered}$ | - | - |
| A097 | - | Acceleration curve selection | R/W | 00..Linear <br> 01..S-curve <br> 02..U-shape <br> 03..Reverse U-shape <br> 04..EL-S curve | 127Dh | 04733 | 0 to 4 | - |
| A098 | - | Deceleration curve setting | R/W | 00..Linear <br> 01 ..S-curve <br> 02..U-shape <br> 03..Reverse U-shape <br> 04..EL-S curve | 127Eh | 04734 | 0 to 4 | - |
| - |  | (Reserved) | - | - | 127Fh | 04735 | - | - |
| - |  | (Reserved) | - | - | 1280h | 04736 | - | - |
| A101 | H | [OI]-[L] input active range start frequency | R/W | Output frequency corresponding to the current input range starting point | 1281h | 04637 | 0 to 40000 | 0.01 Hz |
| A101 | L |  | R/W |  | 1282h | 04738 |  |  |
| A102 | H | [OI]-[L] input active range end frequency | R/W | Output frequency corresponding to the current input range ending point | 1283h | 04739 | 0 to 40000 | 0.01 Hz |
| A102 | L |  | R/W |  | 1284h | 04740 |  |  |
| A103 | - | [OI]-[L] input active range start current | R/W | Starting point for the current input range | 1285h | 04741 | 0 to A104 value | $1 \%$ |
| A104 | - | [OI]-[L] input active range end current | R/W | Ending point for the current input range | 1286h | 04742 | A103 value to 100 | $1 \%$ |
| A105 | - | [OI]-[L] input start frequency enable | R/W | 00..Use A101 start value $01 . . U s e 0 \mathrm{~Hz}$ | 1287h | 04743 | 0, 1 | - |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 1288 \mathrm{~h} \\ \text { to } \\ 128 \mathrm{Ch} \end{gathered}$ | $\begin{gathered} 04744 \\ \text { to } \\ 0448 \end{gathered}$ | - | - |
| A111 | H |  | [O2]-[L] input active range start frequency | R/W | Output frequency corresponding to the bipolar voltage input range starting point | 128Dh | 04749 | $\begin{gathered} -40000 \text { to } \\ 40000 \end{gathered}$ | 0.01 Hz |
| A111 | L | R/W |  | 128Eh |  | 04750 |  |  |
| A112 | H | [O2]-[L] input active range end frequency | R/W | Output frequency corresponding to the bipolar voltage input range ending point | 128Fh | 04751 | $\begin{aligned} & -40000 \text { to } \\ & 40000 \end{aligned}$ | 0.01 Hz |  |
| A112 | L |  | R/W |  | 1290h | 04752 |  |  |  |
| A113 | - | [O2]-[L] input active range start voltage | R/W | Starting point for the bipolar voltage input range | 1291h | 04753 | $-100 \text { to }$ <br> A114 value | $1 \%$ |  |
| A114 | - | [O2]-[L] input active range end voltage | R/W | Ending point for the bipolar voltage input range | 1292h | 04754 | A113 value to 100 | $1 \%$ |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 1293 \mathrm{~h} \\ \text { to } \\ 12 \mathrm{~A} 4 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 04755 \\ \text { to } \\ 04772 \end{gathered}$ | - | - |  |
| A131 | - | Acceleration curve constants setting | R/W | Sets the curve deviation from straight-line acceleration in 10 levels ( 01 to 10) | 12A5h | 04773 | 1 to 10 | - |  |
| A132 | - | Deceleration curve constants setting | R/W | Sets the curve deviation from straight-line deceleration in 10 levels ( 01 to 10) | 12A6h | 04774 | 1 to 10 | - |  |
| - |  | (Reserved) | - | - | $\begin{aligned} & 12 \mathrm{~A} 7 \mathrm{~h} \\ & \text { to } \\ & 12 \mathrm{AEh} \end{aligned}$ | $\begin{gathered} 04775 \\ \text { to } \\ 04782 \end{gathered}$ | - | - |  |
| A141 | - | A input select for calculate function | R/W | 00 . Digital operator (A020/ A220/A320) <br> 01 . Keypad potentiometer <br> 02 . [O] input <br> 03 . [OI] input <br> 04. Comm. port <br> 05 . Expansion card 1 <br> 06 . Expansion card 2 <br> 07 . Pulse train frequency train input | 12AFh | 04783 | 0 to 7 | - |  |
| A142 | - | B input select for calculate function | R/W | 00 . Digital operator (A020/ A220/A320) <br> 01 . Keypad potentiometer <br> 02. [O] input <br> 03 . [OI] input <br> 04. Comm. port <br> 05 . Expansion card 1 <br> 06. Expansion card 2 <br> 07. Pulse train frequency train input | 12B0h | 04784 | 0 to 7 | - |  |
| A143 | - | Calculation symbol | R/W | $\begin{aligned} & \text { 00. ADD (A input + B input) } \\ & \text { 01. SUB (A input }- \text { B input) } \\ & \text { 02 . MUL (A input x B input) } \end{aligned}$ | 12B1h | 04785 | 0, 1, 2 | - |  |
| - |  | (Reserved) | - | - | 12B2h | 04786 | - | - |  |


| Holding Registers, "A" Group Standard Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| A145 | H |  | ADD frequency | R/W | $\begin{aligned} & 0.00 \text { to } 99.99, \\ & 100.0 \text { to } 400.0(\mathrm{~Hz}) \end{aligned}$ | 12B3h | 04787 | 0 to 40000 | 0.01 Hz |
| A145 | L |  |  | R/W |  | 12B4h | 04788 |  |  |
| A146 | - | ADD direction select | R/W | ```00..Plus (adds A145 value to output frequency) 01..Minus (subtracts A145 value from output freq.)``` | 12B5h | 04789 | 0,1 | - |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 12 \mathrm{~B} 6 \mathrm{~h} \\ \text { to } \\ 12 \mathrm{~B} 8 \mathrm{~h} \end{gathered}$ | $\begin{array}{\|c\|} \hline 04790 \mathrm{t} \\ \mathrm{o} \\ 04792 \end{array}$ | - | - |  |
| A150 | - | EL-S curve acceleration ratio 1 | R/W | Range is 0 . to 50 . | 12B9h | 04793 | 0 to 50 | $1 \%$ |  |
| A151 | - | EL-S curve acceleration ratio 2 | R/W | Range is 0 . to 50 . | 12BAh | 04794 | 0 to 50 | $1 \%$ |  |
| A152 | - | EL-S curve acceleration ratio 3 | R/W | Range is 0 . to 50. | 12BBh | 04795 | 0 to 50 | 1\% |  |
| A153 | - | EL-S curve acceleration ratio 4 | R/W | Range is 0 . to 50. | 12BCh | 04796 | 0 to 50 | $1 \%$ |  |
| - |  | (Reserved) | - | - | $\begin{array}{\|l} \text { 12BDh } \\ \text { to } \\ 1300 \mathrm{~h} \end{array}$ | $\begin{gathered} 04797 \\ \text { to } \\ 04864 \end{gathered}$ | - | - |  |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B001 | - |  | Selection of restart mode | R/W | 00. Alarm output after trip, automatic restart disabled <br> 01 . Resume operation after frequency matching <br> 02. Resume operation after frequency matching <br> 03. Resume previous freq. after freq. matching, then decelerate to stop and display trip info <br> 04 . Restart with active matching frequency | 1301h | 04865 | 0 to 4 | - |
| B002 | - |  | Allowable under-voltage power failure time | R/W | The amount of time a power input under-voltage can occur without tripping the power failure alarm | 1302h | 04866 | 3 to 250 | 0.1 sec . |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B003 | - |  | Retry wait time before motor restart | R/W | Time delay after a trip condition goes away before the inverter restarts the motor | 1303h | 04867 | 3 to 1000 | 0.1 sec . |
| B004 | - |  | Instantaneous power failure / under-voltage trip alarm enable | R/W | 00 .Disable <br> 01 .Enable <br> 02 . Disable during stop and ramp to stop | 1304h | 04868 | 0, 1, 2 | - |
| B005 | - | Number of restarts on power failure / undervoltage trip events | R/W | 00 .Restart 16 times <br> 01 .Always restart | 1305h | 04869 | 0,1 | - |
| B006 | - | Phase loss detection enable | R/W | 00 .Disable <br> 01 .Enable | 1306h | 04870 | 0,1 | - |
| B007 | H | Restart frequency threshold | R/W | When the frequency of the motor is less than this value, the inverter will restart at 0 Hz | 1307h | 04871 | 0 to 40000 | 0.01 Hz |
| B007 | L |  | R/W |  | 1308h | 04872 |  |  |
| B008 | - | Retry after trip select | R/W | 00 .Always retry after trip <br> 01 . Start with 0 Hz <br> 02 . Start with frequency matching <br> 03 . Retry after deceleration and stop with matching frequency <br> 04 . Start with active matching frequency | 1309h | 04873 | 0 to 4 | - |
| B009 | - | Retry after undervoltage select | R/W | 00 .Restart 16 times <br> 01 .Unlimited | 130Ah | 04874 | 0,1 | - |
| B010 | - | Retry count select after overvoltage or overcurrent | R/W | 1 to 3 (times) | 130Bh | 04875 | 1 to 3 | times |
| B011 | - | Retry wait time after trip | R/W | 0.3 to 100.0 (seconds) | 130Ch | 04876 | 3 to 1000 | 0.1 sec . |
| B012 | - | Electronic thermal setting (calculated within the inverter from current output) | R/W | Range is 0.2 * rated current to 1.2 * rated current | 130Dh | 04877 | $\begin{gathered} 200 \text { to } \\ 1000 \end{gathered}$ | 0.1 \% |
| B212 | - | Electronic thermal setting (calculated within the inverter from current output), 2nd motor | R/W | Range is 0.2 * rated current to 1.2 * rated current | 230Ch | 08972 | $\begin{gathered} 200 \text { to } \\ 1000 \end{gathered}$ | 0.1 \% |
| B312 | - | Electronic thermal setting (calculated within the inverter from current output), 3rd motor | R/W | Range is 0.2 * rated current to 1.2 * rated current | 330Ch | 13068 | $\begin{gathered} 200 \text { to } \\ 1000 \end{gathered}$ | 0.1 \% |
| B013 | - | Electronic thermal characteristic | R/W | 00 . Reduced torque 01 .Constant torque 02 .Free-setting | 130Eh | 04878 | 0, 1, 2 | - |
| - |  | (Reserved) | - |  | 130Fh | 04879 | - | - |
| B213 | - | Electronic thermal characteristic, 2nd motor | R/W | 00 . Reduced torque <br> 01 .Constant torque <br> 02 .Free-setting | 230Dh | 08973 | 0, 1, 2 | - |
| - |  | (Reserved) | - | - | $\begin{gathered} 230 \mathrm{Eh} \\ \text { to } \\ 2501 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 08974 \\ \text { to } \\ 09493 \end{gathered}$ | - | - |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B313 | - |  | Electronic thermal characteristic, 3rd motor | R/W | 00 . Reduced torque <br> 01 . Constant torque <br> 02 . Free-setting | 330 Dh | 13069 | 0, 1, 2 | - |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 330 \mathrm{Eh} \\ \text { to } \\ 3506 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 13070 \\ \text { to } \\ 13574 \end{gathered}$ | - | - |
| B015 | - | Free setting, electronic thermal frequency (1) | R/W | Data point coordinates for Hz axis (horizontal) in the free-form curve | 1310h | 04880 | 0 to 400 | 1 Hz |
| B016 | - | Free setting, electronic thermal current (1) | R/W | Data point coordinates for Ampere axis (vertical) in the free-form curve | 1311h | 04881 | 0 to rated current | 0.1 A |
| B017 | - | Free setting, electronic thermal frequency (2) | R/W | Data point coordinates for Hz axis (horizontal) in the free-form curve | 1312h | 04882 | 0 to 400 | 1 Hz |
| B018 | - | Free setting, electronic thermal current (2) | R/W | Data point coordinates for Ampere axis (vertical) in the free-form curve | 1313h | 04883 | 0 to rated current | 0.1 A |
| B019 | - | Free setting, electronic thermal frequency (3) | R/W | Data point coordinates for Hz axis (horizontal) in the free-form curve | 1314h | 04884 | 0 to 400 | 1 Hz |
| B020 | - | Free setting, electronic thermal current (3) | R/W | Data point coordinates for Ampere axis (vertical) in the free-form curve | 1315h | 04885 | 0 to rated current | 0.1 A |
| B021 | - | Overload restriction operation mode | R/W | 00. Disable <br> 01 . Enable for acceleration and constant speed <br> 02. Enable for constant speed only <br> 03. Enable for accel, decel, and constant speed | 1316h | 04886 | 0 to 3 | - |
| B022 | - | Overload restriction setting | R/W | ( 0.20 x rated current) to ( 1.80 x rated current) (A) | 1317h | 04887 | $\begin{gathered} 200 \text { to } \\ 2000 \end{gathered}$ | 0.1 \% |
| B023 | - | Deceleration rate at overload restriction | R/W | 0.10 to 30.00 (seconds) | 1318h | 04888 | 10 to 3000 | 0.1 sec . |
| B024 | - | Overload restriction operation mode (2) | R/W | 00 . Disable <br> 01. Enable for acceleration and constant speed <br> 02. Enable for constant speed only <br> 03. Enable for accel, decel, and constant speed | 1319h | 04889 | 0 to 3 | - |
| B025 | - | Overload restriction setting (2) | R/W | ( 0.20 x rated current) to ( 1.80 x rated current) (A) | 131Ah | 04890 | $\begin{aligned} & 200 \text { to } \\ & 2000 \end{aligned}$ | 0.1 \% |
| B026 | - | Deceleration rate at overload restriction (2) | R/W | 0.10 to 30.00 (seconds) | 131Bh | 04891 | 1 to 3000 | 0.01 sec . |
| B027 | - | Overcurrent suppression enable | R/W | 00. Disable <br> 01. Enable | 131 Ch | 04892 | 0,1 | - |
| B028 | - | Current limit for active frequency-matching restart | R/W | ( 0.20 x rated current) to ( 1.80 x rated current) (A) | 131Dh | 04893 | $\begin{gathered} \hline 200 \text { to } \\ 2000 \end{gathered}$ | 0.1 \% |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B029 | - |  | Scan time constant for active freq. matching | R/W | 10 to 3000 | 131Eh | 04894 | 0.01 sec . | 0.01 sec . |
| B030 | - |  | Restart freq. select for active freq. matching | R/W | 00 . Frequency at last shutoff <br> 01 .Maximum frequency <br> 02 .Set frequency | 131Fh | 04895 |  |  |
| B031 | - | Software lock mode selection | R/W | 00 .Low-level access, [SFT] input blocks all edits <br> 01 .Low-level access, [SFT] input blocks edits (except F001 and Multi-speed parameters) <br> 02 . No access to edits <br> 03 . No access to edits except F001 and Multi-speed parameters <br> 10 .High-level access, including B031 | 1320h | 04896 |  |  |
| - |  | (Reserved) | - | - | 1321h | 04897 | - | - |
| - |  | (Reserved) | - | - | 1322h | 04898 | - | - |
| B034 | H | Run/power-on warning time | R/W | 0 to 9999. (0 to 99990), 1000 to 6553 (10000 to 655300) (hours) | 1323h | 04899 | 0 to 65535 | 1 [10hours] |
| B034 | L |  | R/W |  | 1324h | 04900 |  |  |
| B035 | - | Rotational direction restriction | R/W | 00 . Enable for fwd. and rev. <br> 01 .Enable for forward only <br> 02 .Enable for reverse only | 1325h | 04901 | 0, 1, 2 | - |
| B036 | - | Reduced voltage start selection | R/W | 000 (short) to 255 (long) | 1326h | 04902 | 0 to 255 | - |
| B037 | - | Function code display restriction | R/W | 00 .Display all <br> 01 .Display only utilized functions <br> 02 .Display user-selected functions only <br> 03 .Data comparison display <br> 04 .Basic display | 1327h | 04903 | 0 to 4 | - |
| B038 | - | Initial display selection | R/W | 00 .Last value dislayed when STR key was pressed <br> 01 .D001 <br> 02 .D002 <br> 03 .D003 <br> 04 .D007 <br> 05 .F001 | 1328h | 04904 | 0 to 5 | - |
| B039 | - | Automatic user parameter function enable | R/W | 00 .Disable <br> 01 .Enable | 1329h | 04905 | 0,1 | - |
| B040 | - | Torque limit selection | R/W | 00 .4-quadrant mode <br> 01 . Selected by two input terminals <br> 02 . From analog [O2] input <br> 03 .From expansion card 1 <br> 04 .From expansion card 2 | 132Ah | 04906 | 0 to 4 | - |
| B041 | - | Torque limit (1) (forwarddriving in 4-quadrant mode) | R/W | 0. to 200. (\%), no (disable torque limit) | 132Bh | 04907 | $\begin{gathered} 0 \text { to } 200, \\ 255=(\mathrm{no}) \end{gathered}$ | $1 \%$ |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B042 | - |  | Torque limit (2) (reverseregenerating in 4-quadrant mode) | R/W | 0. to 200. (\%), no (disable torque limit) | 132Ch | 04908 | $\begin{aligned} & \hline 0 \text { to } 200, \\ & 255=(\text { no }) \end{aligned}$ | 1\% |
| B043 | - |  | Torque limit (3) (reversedriving in 4-quadrant mode) | R/W | 0. to 200. (\%), no (disable torque limit) | 132Dh | 04909 | $\begin{gathered} 0 \text { to } 200, \\ 255=(\text { no }) \end{gathered}$ | $1 \%$ |
| B044 | - | Torque limit (4) (forwardregenerating in 4-quadrant mode) | R/W | 0. to 200. (\%), no (disable torque limit) | 132Eh | 04910 | $\begin{gathered} 0 \text { to } 200, \\ 255=(\text { no }) \end{gathered}$ | $1 \%$ |
| B045 | - | Torque limit LADSTOP enable | R/W | 00. Disable <br> 01. Enable | 132Fh | 04911 | 0,1 | - |
| B046 | - | Reverse Run protection enable | R/W | 00. Disable <br> 01. Enable | 1330h | 04912 | 0,1 | - |
| - |  | (Reserved) | - | - | $\begin{gathered} 1331 \mathrm{~h} \\ \text { to } \\ 1333 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 04913 \\ \text { to } \\ 04915 \end{gathered}$ | - | - |
| B050 | - | Controller deceleration and stop on power loss | R/W | 00. Disable <br> 01 . Constant decel to stop <br> 02. Constant DC voltage control with resume <br> 03. Constant DC voltage control | 1334h | 04916 | 0 to 3 | - |
| B051 | - | DC bus voltage trigger level during power loss | R/W | Sets trigger for controlled deceleration and stop on power loss function | 1335h | 04917 | 0 to 10000 | 0.1 V |
| B052 | - | Over-voltage threshold during power loss | R/W | Sets over-voltage threshold for controlled deceleration function | 1336h | 04918 | 0 to 10000 | 0.1 V |
| B053 | H | Deceleration time setting during power loss | R/W | 0.01 to $99.99,100.0$ to 999.9 , 1000 to 3600 (seconds) | 1337h | 04919 | $\begin{gathered} 0 \text { to } \\ 360000 \end{gathered}$ | 0.01 sec |
| B053 | L |  | R/W |  | 1338h | 04920 |  |  |
| B054 | - | Initial output frequency decrease during power loss | R/W | Sets the initial decrease in output frequency upon power loss | 1339h | 04921 | 0 to 1000 | 0.01 Hz |
| B055 | - | Proportional gain setting for non-stop operation at power loss | R/W | 0.00 to 2.55 | 133Ah | 04922 | 0 to 255 | 0.01 |
| B056 | - | Integral time setting for non-stop operation at power loss | R/W | 0.0 to $9.999,10.00$ to 65.55 | 133Bh | 04923 | 0 to 65535 | $\begin{gathered} 0.001 \\ \text { sec. } \end{gathered}$ |
| - |  | (Reserved) | - | - | $\begin{gathered} 133 \mathrm{Ch} \\ \text { to } \\ 133 \mathrm{Eh} \end{gathered}$ | $\begin{gathered} 04924 \\ \text { to } \\ 04926 \end{gathered}$ | - | - |
| B060 | - | [O] input max. limit level of window comparator | R/W | $\begin{aligned} & \text { 0. to } 100 .(\%) \\ & \text { Lower limit = B061 + B062 } / 2 \end{aligned}$ | 133Fh | 04927 | 0 to 100 | $1 \%$ |
| B061 | - | [O] input min. limit level of window comparator | R/W | $\begin{aligned} & \text { 0. to } 100 .(\%) \\ & \text { Lower limit = B060 }- \text { B062 } / 2 \end{aligned}$ | 1340h | 04928 | 0 to 100 | $1 \%$ |
| B062 | - | [O] input hysteresis width of window comparator | R/W | $\begin{array}{\|l} \hline 0 . \text { to } 10 .(\%) \\ \text { Lower limit = B061 }- \text { B062 } / 2 \end{array}$ | 1341h | 04929 | 0 to 10 | $1 \%$ |
| B063 | - | [OI] input max. limit level of window comparator | R/W | $\begin{aligned} & \text { 0. to } 100 .(\%) \\ & \text { Lower limit = B064 + B066 / } 2 \end{aligned}$ | 1342h | 04930 | 0 to 100 | $1 \%$ |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B064 | - |  | [OI] input min. limit level of window comparator | R/W | $\begin{aligned} & \hline \text { 0. to } 100 .(\%) \\ & \text { Lower limit = B063 - B066 / } 2 \end{aligned}$ | 1343h | 04931 | 0 to 100 | 1\% |
| B065 | - |  | [OI] input hysteresis width of window comparator | R/W | $\begin{aligned} & \text { 0. to } 10 .(\%) \\ & \text { Lower limit = B063 }- \text { B064 / } 2 \end{aligned}$ | 1344h | 04932 | 0 to 10 | $1 \%$ |
| B066 | - | [O/OI/O2] input maximum limit level of window comparator | R/W | $\begin{aligned} & \hline-100 . \text { to } 100 .(\%) \\ & \text { Lower limit }=\text { B067 }+ \text { B068 } / 2 \end{aligned}$ | 1345h | 04933 | 0 to 100 | $1 \%$ |
| B067 | - | [O/OI/O2] input minimum limit level of window comparator | R/W | $\begin{aligned} & \hline-100 . \text { to } 100 .(\%) \\ & \text { Lower limit }=\text { B066 }- \text { B068 / } 2 \end{aligned}$ | 1346h | 04934 | 0 to 100 | $1 \%$ |
| B068 | - | [O/OI/O2] input hysteresis width of window comparator | R/W | $\begin{aligned} & \text { 0. to } 10 .(\%) \\ & \text { Lower limit = B066 }- \text { B067 / } 2 \end{aligned}$ | 1347h | 04935 | 0 to 10 | $1 \%$ |
| - |  | (Reserved) | - | - | 1348h | 04936 | - | - |
| B070 | - | [O] input disconnect threshold | R/W | $\begin{aligned} & 0 \text { to } 100(\%) ; \\ & 255=\text { ignore setting } \end{aligned}$ | 1349h | 04937 | $\begin{gathered} 0 \text { to } 100, \\ 255 \end{gathered}$ | $1 \%$ |
| B071 | - | [OI] input disconnect threshold | R/W | $\begin{aligned} & \hline 0 \text { to } 100(\%) ; \\ & 255=\text { ignore setting } \end{aligned}$ | 134Ah | 04938 | $\begin{gathered} 0 \text { to } 100, \\ 255 \end{gathered}$ | 1\% |
| B072 | - | [O2] input disconnect threshold | R/W | $\begin{aligned} & 0 \text { to } 100(\%) ; \\ & 255=\text { ignore setting } \end{aligned}$ | 134Bh | 04939 | $\begin{gathered} 0 \text { to } 100, \\ 255 \end{gathered}$ | $1 \%$ |
| - |  | (Reserved) | - | - | $\begin{aligned} & 134 \mathrm{Ch} \\ & \text { to } \\ & 1350 \mathrm{~h} \end{aligned}$ | $\begin{gathered} 04940 \\ \text { to } \\ 04944 \end{gathered}$ | - | - |
| B078 | - | Clear cumulative input power data | R/W | 00 .No change <br> 01 .Clear the data | 1351h | 04945 | 0,1 | - |
| B079 | - | Cumulative input power display gain setting | R/W | 1. to 1000. | 1352h | 04946 | 1 to 1000 | 1 |
| - |  | (Reserved) | - | - | 1353h | 04947 | - | - |
| - |  | (Reserved) | - | - | 1354h | 04948 | - | - |
| B082 | - | Start frequency adjustment | R/W | 0.10 to 9.99 (Hz) | 1355h | 04949 | 10 to 999 | 0.01 Hz |
| B083 | - | Carrier frequency setting | R/W | Sets the PWM carrier (internal switching frequency) | 1356h | 04950 | 5 to 150 | 0.1 kHz |
| B084 | - | Initialization mode (parameters or trip history) | R/W | 00 .Trip history clear 01 .Parameter initialization 02 .Trip history clear and parameter initialization | 1357h | 04951 | 0, 1, 2 | - |
| B085 | - | Country code for initialization | R/W | 00 .Japan version <br> 01 .Europe version <br> 02 .USA version | 1358h | 04952 | 0, 1, 2 | - |
| B086 | - | Frequency scaling conversion factor | R/W | Specify a constant to scale D007 to display in engineering units | 1359h | 04953 | 1 to 999 | 0.1 |
| B087 | - | STOP key enable | R/W | 00 .Enable <br> 01 .Disable <br> 02 . Disable only the STOP function | 135Ah | 04954 | 0, 1, 2 | - |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| B088 | - |  | Restart mode after FRS | R/W | 00 . Restart from 0 Hz <br> 01. Restart from frequency detected from actual speed of motor <br> 02 . Restart from active matching frequency | 135Bh | 04955 | 0, 1, 2 | - |
| - |  |  | (Reserved) | - | - | 135Ch | 04956 | - | - |
| B090 | - | Dynamic braking usage ratio | R/W | $0.0 \text { to } 100.0(\%)$ <br> Set $=0.0$ to disable dynamic braking | 135Dh | 04957 | 0 to 1000 | 0.1 \% |
| B091 | - | Stop mode selection | R/W | 00. DEC (decelerate and stop) 01. FRS (free run to stop) | 135Eh | 04958 | 0,1 | - |
| B092 | - | Cooling fan control | R/W | 00. Fan always ON <br> 01. Fan ON during RUN, OFF during STOP | 135Fh | 04959 | 0,1 | - |
| - |  | (Reserved) | - | - | 1360h | 04960 | - | - |
| - |  | (Reserved) | - | - | 1361h | 04961 | - | - |
| B095 | - | Dynamic braking control | R/W | 00. Disable <br> 01 . Enable during RUN only 02 . Enable always | 1362h | 04962 | 0, 1, 2 | - |
| B096 | - | Dynamic braking activation level | R/W | $\begin{aligned} & 330 \text { to } 380 \text { (V) ( } 200 \mathrm{~V} \text { class), } \\ & 660 \text { to } 760 \text { (V) ( } 400 \mathrm{~V} \text { class) } \end{aligned}$ | 1363h | 04963 | $\begin{aligned} & 330 \text { to } 380 \\ & 660 \text { to } 760 \end{aligned}$ | 1 V |
| - |  | (Reserved) | - | - | 1364h | 04964 | - | - |
| B098 | - | Thermistor for thermal protection control | R/W | 00. Disable <br> 01 . Enable-PTC thermistor <br> 02 . Enable-NTC thermistor | 1365h | 04965 | 0, 1, 2 | - |
| B099 | - | Thermal protection level setting | R/W | Thermistor resistance threshold at which trip occurs | 1366h | 04966 | 0 to 9999 | $1 \Omega$ |
| B100 | - | Free-setting V/f freq. (1) | R/W | 0. to Free-setting V/f freq. (2) | 1367h | 04967 | 0 to V/f 2 | 1 Hz |
| B101 | - | Free-setting V/f voltage (1) | R/W | 0.0 to 800.0 (V) | 1368h | 04968 | 0 to 8000 | 0.1 V |
| B102 | - | Free-setting V/f freq. (2) | R/W | 0. to Free-setting V/f freq. (3) | 1369h | 04969 | 0 to V/f 3 | 1 Hz |
| B103 | - | Free-setting V/f voltage (2) | R/W | 0.0 to 800.0 (V) | 136Ah | 04970 | 0 to 8000 | 0.1 V |
| B104 | - | Free-setting V/f freq. (3) | R/W | 0. to Free-setting V/f freq. (4) | 136Bh | 04971 | 0 to V/f 4 | 1 Hz |
| B105 | - | Free-setting V/f voltage (3) | R/W | 0.0 to 800.0 (V) | 136 Ch | 04972 | 0 to 8000 | 0.1 V |
| B106 | - | Free-setting V/f freq. (4) | R/W | 0. to Free-setting V/f freq. (5) | 136Dh | 04973 | 0 to V/f 5 | 1 Hz |
| B107 | - | Free-setting V/f voltage (4) | R/W | 0.0 to 800.0 (V) | 136Eh | 04974 | 0 to 8000 | 0.1 V |
| B108 | - | Free-setting V/f freq. (5) | R/W | 0. to Free-setting V/f freq. (6) | 136Fh | 04975 | 0 to V/f 6 | 1 Hz |
| B109 | - | Free-setting V/f voltage (5) | R/W | 0.0 to 800.0 (V) | 1370h | 04976 | 0 to 8000 | 0.1 V |
| B110 | - | Free-setting V/f freq. (6) | R/W | 0. to Free-setting V/f freq. (7) | 1371h | 04977 | 0 to V/f 7 | 1 Hz |
| B111 | - | Free-setting V/f voltage (6) | R/W | 0.0 to 800.0 (V) | 1372h | 04978 | 0 to 8000 | 0.1 V |
| B112 | - | Free-setting V/f freq. (7) | R/W | 0. to 400.0 (V) | 1373h | 04979 | 0 to V/f 8 | 1 Hz |
| B113 | - | Free-setting V/f voltage (7) | R/W | 0.0 to 800.0 (V) | 1374h | 04980 | 0 to 8000 | 0.1 V |


| Holding Registers, "B" Group Fine Tuning Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 1375 \mathrm{~h} \\ \text { to } \\ 137 \mathrm{Ah} \end{gathered}$ | $\begin{gathered} 04981 \\ \text { to } \\ 04986 \end{gathered}$ | - | - |
| B120 | - |  | Brake Control Enable | R/W | 00 .Disable 01 .Enable | 137Bh | 04987 | 0,1 | - |
| B121 | - | Brake Wait Time for Release | R/W | Sets time delay between arrival at release frequency and the brake release signal | 137Ch | 04977 | 0 to 500 | 0.01 sec . |
| B122 | - | Brake Wait Time for Acceleration | R/W | Sets time delay from receipt of brake confirmation signal to start of motor acceleration | 137Dh | 04979 | 0 to 500 | 0.01 sec . |
| B123 | - | Brake Wait Time for Stopping | R/W | Sets time delay from brake confirmation signal turns OFF to inverter deceleration to 0 H | 137Eh | 04990 | 0 to 500 | 0.01 sec . |
| B124 | - | Brake Wait Time for Confirmation | R/W | Sets the wait time for confirmation after turn ON/OFF of brake release | 137Fh | 04991 | 0 to 500 | 0.01 sec . |
| B125 |  | Brake Release Frequency Setting | R/W | Sets the frequency of the brake release output signal after delay set by B121 | 1380h | 04992 | 0 to 40000 | 0.01 Hz |
| B126 |  | Brake Release Current Setting | R/W | Sets the minimum inverter current level above which the brake release signal is permitted | 1381h | 04993 | 0 to 1800 | 0.1 \% |
| B127 | - | Braking frequency | R/W | 0.00 to $99.99,100.0$ to 400.0 Hz | 1382h | 04994 | 0 to 40000 | 0.01 Hz |
| - |  | (Reserved) | - | - | 1383h | 04995 | - | - |
| - |  | (Reserved) | - | - | 1384h | 04996 | - | - |
| B130 | Over-voltage LADSTOP enable |  | R/W | 00 .Disable <br> 01 .Enable during deceleration and constant speed <br> 02 .Enable during acceleration | 1385h | 04997 | 0, 1, 2 | - |
| B131 | - | Over-voltage LADSTOP level | R/W | 330 to 390 (V) for 200 V class, 660 to $780(\mathrm{~V})$ for 400 V class | 1386h | 04998 | $\begin{aligned} & 330 \text { to } 390 \\ & 660 \text { to } 780 \end{aligned}$ | 1 V |
| B132 |  | Acceleration and deceleration rate at overvoltage suppression | R/W | 0.10 to 30.00 (seconds) | 1387h | 04999 | 10 to 3000 | 0.01 sec . |
| B133 |  | Overvoltage suppression proportional gain | R/W | 0.00 to 2.55 | 1388h | 05000 | 0 to 255 | 0.01 |
| B134 | - | Overvoltage suppression integral time | R/W | $\begin{aligned} & 0.000 \text { to } 9.999, \\ & 10.00 \text { to } 63.53 \text { (seconds) } \end{aligned}$ | 1389h | 05001 |  |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 1390 \mathrm{~h} \\ \text { to } \\ 1400 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05002 \\ \text { to } \\ 05120 \end{gathered}$ | - | - |


| Holding Registers, "C" Group Intelligent Terminal Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| C001 | - |  | Terminal [1] function | R/W | See "Input Terminal Configuration" on page 3-50 | 1401h | 05121 | 1 to 9,11 to 18,20 to 24,26 to 29,31 to 48,no | - |
| C002 | - |  | Terminal [2] function | R/W |  | 1402h | 05122 |  |  |
| C003 | - | Terminal [3] function | R/W | 1403h |  | 05123 |  |  |
| C004 | - | Terminal [4] function | R/W | 1404h |  | 05124 |  |  |
| C005 | - | Terminal [5] function | R/W | 1405h |  | 05125 |  |  |
| C006 | - | Terminal [6] function | R/W | 1406h |  | 05126 |  |  |
| C007 | - | Terminal [7] function | R/W | 1407h |  | 05127 |  |  |
| C008 | - | Terminal [8] function | R/W | 1408h |  | 05128 |  |  |
|  |  | (Reserved) | - | - | 1409h |  | - | - |  |
| - |  | (Reserved) | - | - |  | $05130$ | - | - |  |
| C011 | - T | Terminal [1] active state | R/W | Select logic convention, two option codes: <br> 00..Normally open (N.O.) <br> 01 ..Normally closed (N.C.) | 140Bh | 05131 | 0,1 | - |  |
| C012 | - | Terminal [2] active state | R/W |  | 140 Ch | 05132 |  |  |  |
| C013 | - | Terminal [3] active state | R/W |  | 140Dh | 05133 |  |  |  |
| C014 | - | Terminal [4] active state | R/W |  | 140Eh | 05134 |  |  |  |
| C015 | - | Terminal [5] active state | R/W |  | $140 \mathrm{Fh}$ | 05135 |  |  |  |
| C016 | - | Terminal [6] active state | $\begin{array}{\|l\|} \hline \text { R/W } \\ \hline \end{array}$ |  | $1410 \mathrm{~h}$ | 05136 |  |  |  |
| C017 | - | Terminal (7) active state | R/W |  | 1411h | 05137 |  |  |  |
| C018 | - | Terminal [8] active state |  |  | 1412h | $05138$ |  |  |  |
| C019 | - | Terminal [FW] active state | R/W |  | 1413h | $05139$ |  |  |  |
| - |  | (Reserved) | - | - | 1414h | 05140 | - | - |  |
| C021 | - | Terminal [11] function |  | See "Output Terminal Configuration" on page 3-55 | 1415h | 05141 | $\begin{aligned} & 0 \text { to } 13, \\ & 19 \text { to } 26 \end{aligned}$ | - |  |
| C022 | - | Terminal [12] function | R/W |  | 1416h | $05142$ |  |  |  |
| C023 | - | Terminal [13] function | R/W |  | 1417h | $05143$ |  |  |  |
| C024 | - | Terminal [14] function | R/W |  | 1418h | $05144$ |  |  |  |
| C025 | - | Terminal [15] function | R/W |  | 1419h | $05145$ |  |  |  |
| C026 | - | Alarm relay terminal function | R/W |  | 141Ah | 05146 |  |  |  |
| C027 | - | [FM] signal selection | R/W | See "Output Terminal Configuration" on page 3-55 | 141Bh | $05147$ | 0 to 10, 12 | - |  |
| C028 | - | [AM] signal selection | R/W |  | $141 \mathrm{Ch}$ | 05148 |  |  |  |
| C029 | - | [AMI] signal selection | R/W |  | 141Dh | 05149 |  |  |  |
| C030 | - | Digital current monitor reference value | R/W | Current with digital current monitor output at 1.44 kHz | 141Eh | 05150 | $\begin{gathered} 200 \text { to } \\ 2000 \\ \hline \end{gathered}$ | 0.1 \% |  |
| C031 | - | Terminal [11] active state | R/W | Select logic convention, two option codes: <br> 00..Normally open (N.O.) <br> 01 ..Normally closed (N.C.) | 141Fh | 05151 | 0, 1 | - |  |
| C032 | - | Terminal [12] active state | R/W |  | 1420h | 05152 |  |  |  |
| C033 | - | Terminal [13] active state | R/W |  | 1421h | 05153 |  |  |  |
| C034 | - | Terminal [14] active state | R/W |  | 1422h | 05154 |  |  |  |
| C035 | - | Terminal [15] active state | R/W |  | 1423h | 05155 |  |  |  |
| C036 | - | Alarm relay active state | R/W |  | 1424h | $05156$ |  |  |  |


| Holding Registers, "C" Group Intelligent Terminal Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | 1425h | 05157 | - | - |
| C038 | - |  | Low current indication output mode select | R/W | 00 . Output during accel/ decel and constant speed <br> 01 . Output only during constant speed | 1426h | 05158 | 0,1 | - |
| C039 | - | Low current indication detection level | R/W | 0.0 to 2.0 x rated inverter current | 1427h | 05159 | 0 to 1800 | 0.1 \% |
| C040 | - | Overload signal output mode | R/W | $\begin{aligned} & \hline 00 \text {. During accel / decel / } \\ & \text { constant speed } \\ & 01 \text {. During constant speed } \end{aligned}$ | 1428h | 05160 | 0,1 | - |
| C041 | - | Overload level setting | R/W | 0.00 x rated current to 2.00 x rated current (A) | 1429h | 05161 | 0 to 1800 | 0.1 \% |
| C042 | H | Frequency arrival setting for accel. | R/W | Sets the frequency arrival setting threshold for the output frequency during acceleration | 142Ah | 05162 | 0 to 40000 | 0.01 Hz |
| C042 | L |  | R/W |  | 142Bh | 05163 |  |  |
| C043 | H | Arrival frequency setting for decel. | R/W | Sets the frequency arrival setting threshold for the output frequency during deceleration | 142Ch | 05164 | 0 to 40000 | 0.01 Hz |
| C043 | L |  | R/W |  | 142Dh | 05165 |  |  |
| C044 | - | PID deviation level setting | R/W | Sets the PID loop error threshold \|SP-PV| (absolute value) to trigger intelligent output [OD] | 142Eh | 05166 | 0 to 1000 | 0.1 \% |
| C045 | H | Frequency arrival setting for acceleration (2) | R/W | $\begin{aligned} & 0.0 \text { to } 99.99, \\ & 100.0 \text { to } 400.0(\mathrm{~Hz}) \end{aligned}$ | 142Fh | 05167 | 0 to 40000 | 0.01 Hz |
| C045 | L |  | R/W |  | 1430h | 05168 |  |  |
| C046 | H | Frequency arrival setting for deceleration (2) | R/W | $\begin{aligned} & 0.0 \text { to } 99.99, \\ & 100.0 \text { to } 400.0(\mathrm{~Hz}) \end{aligned}$ | 1431h | 05169 | 0 to 40000 | 0.01 Hz |
| C046 | L |  | R/W |  | 1432h | 05170 |  |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 1433 \mathrm{~h} \\ \text { to } \\ 1437 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05171 \\ \text { to } \\ 05175 \end{gathered}$ | - | - |
| C052 | - | Maximum PID feedback (PV) data | R/W | 0.0 to 100.0 (\%) | 1438h | 05176 | 0 to 1000 | 0.1 \% |
| C053 | - | Minimum PID feedback (PV) data | R/W | 0.0 to 100.0 (\%) | 1439h | 05177 | 0 to 1000 | 0.1 \% |
| - |  | (Reserved) | - | - | 143Ah | 05178 |  |  |
| C 055 | - | Over-torque (forwarddriving) level setting | R/W | Threshold for intelligent output terminal [OTQ], quadrant I | 143Bh | 05179 | 0 to 180 | $1 \%$ |
| C056 | - | Over-torque (reverse regenerating) level setting | R/W | Threshold for intelligent output terminal [OTQ], quadrant II | 143Ch | 05180 | 0 to 180 | $1 \%$ |
| C057 | - | Over-torque (reverse driving) level setting | R/W | Threshold for intelligent output terminal [OTQ], quadrant III | 143Dh | 05181 | 0 to 180 | $1 \%$ |
| C058 | - | Over-torque (forward regenerating) level setting | R/W | Threshold for intelligent output terminal [OTQ], quadrant IV | 143Eh | 05182 | 0 to 180 | $1 \%$ |


| Holding Registers, "C" Group Intelligent Terminal Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| - |  |  | (Reserved) | - | - | 143Fh | 05183 | - | - |
| - |  |  | (Reserved) | - | - | 1440h | 05184 | - | - |
| C061 | - | Electronic thermal warning level setting | R/W | Sets the threshold for intelligent output [THM] | 1441h | 05185 | 0 to 100 | $1 \%$ |
| C062 | - | Alarm code output | R/W | 00..Disable <br> 01 ..Enable - 3-bit code <br> 02..Enable - 4-bit code | 1442h | 05186 | 0, 1, 2 | - |
| C063 | - | Zero speed detection level | R/W | 0.00 to 99.99 / 100.0 (Hz) | 1443h | 05187 | 0 to 10000 | 0.01 Hz |
| C064 | - | Heatsink overheat warning level | R/W | Alarm temperature threshold for heatsink in inverter | 1444h | 05188 | 0 to 200 | $1{ }^{\circ} \mathrm{C}$ |
| - |  | (Reserved) | - | - | $\begin{gathered} \text { 1445h } \\ \text { to } \\ 144 \mathrm{Ah} \end{gathered}$ | $\begin{gathered} 05189 \\ \text { to } \\ 05194 \end{gathered}$ | - | - |
| C071 | - | Communication speed selection | R/W | 02..Test <br> 03..2400 (bps) <br> 04..4800 (bps) <br> $05 . .9600(\mathrm{bps})$ <br> $06 . .19200(\mathrm{bps})$ | 144Bh | 05195 | 2 to 6 | - |
| C072 |  | Node allocation | R/W | Set the address of the inverter on the network | 144 Ch | 05196 | 1 to 32 | - |
| C073 | - | Communication data length selection | R/W | 07..7-bit data 08..8-bit data | 144Dh | 05197 | 7, 8 | bits |
| C074 |  | Communication parity selection | R/W | 00...No parity <br> 01..Even parity <br> 02..Odd parity | 144Eh | 05198 | 0, 1, 2 | - |
| C075 | - | Communication stop bit selection | R/W | 01..1 Stop bit $02 . .2$ Stop bits | 144Fh | 05199 | 1,2 | bits |
| C076 | - | Action upon communication error selection | R/W | 00..Trip <br> 01..Trip after deceleration and stop <br> 02..No action (ignore errors) <br> 03..Free-run stop <br> 04..Decelerate and stop | 1450h | 05200 | 0 to 4 | - |
| C077 | - | Communication timeout before trip | R/W | 0.00 to 99.99 (seconds) | 1451h | 05201 | 0 to 9999 | 0.01 sec . |
| C078 | - | Communication wait time | R/W | Time the inverter waits after receiving a message before it transmits | 1452h | 05202 | 0 to 1000 | 1 msec . |
| C079 | - | Communication protocol select | R/W | $\begin{array}{\|l\|} \hline 00 \text {..ASCII } \\ \text { 01..ModBus RTU } \end{array}$ | 1453h | 05203 | 0,1 | - |
| - |  | (Reserved) | - | - | 1454h | 05204 | - | - |
| C081 | - | [O] input span calibration | R/W | $\begin{array}{\|l} \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530 \text { ) } \end{array}$ | 1455h | 05205 | 0 to 65530 | 1 |
| C082 | - | [OI] input span calibration | R/W | $\begin{array}{\|l} \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530 \text { ) } \end{array}$ | 1456h | 05206 | 0 to 65530 | 1 |
| C083 | - | [O2] input span calibration | R/W | $\begin{array}{\|l} \hline \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65530) \end{array}$ | 1457h | 05207 | 0 to 65530 | 1 |
| - |  | (Reserved) | - | - | 1458h | 05208 | - | - |


| Holding Registers, "C" Group Intelligent Terminal Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| C085 | - |  | Thermistor input tuning | R/W | 0.0 to 999.9., 1000 | 1459h | 05209 |  |  |
| - |  |  | (Reserved) | - | - | $\begin{aligned} & 145 \mathrm{Ah} \\ & \text { to } \\ & \text { 145Eh } \end{aligned}$ | $\begin{gathered} 05210 \\ \text { to } \\ 05214 \end{gathered}$ | - | - |
| C091 | - | Debug mode enable | R | 00 . No display <br> 01 .Display | 145Fh | 05215 | 0,1 | - |
| - | - | (Reserved) | - | - | $\begin{gathered} \text { 1460h } \\ \text { to } \\ 1468 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05216 \\ \text { to } \\ 05224 \end{gathered}$ | - | - |
| C101 | - | Up/Down memory mode selection | R/W | 00 . Clear last freq. (return to default freq. F001) 01 . Keep last frequency adjusted by UP/DWN | 1469h | 05225 | 0,1 | - |
| C102 | - | Reset mode selection | R/W | 00 . Cancel trip state, stop inverter output, reset CPU; clear position counter at ON transition <br> 01 . Cancel trip state, stop inverter output, reset CPU; clear position counter at OFF transition <br> 02 . Cancel trip state and clear position counter; no effect if a trip does not exist 03 . Cancel trip state but does not clear position counter, no effect if a trip does not exist | 146Ah | 05226 | 0 to 3 | - |
| C103 | - | Restart mode after reset | R/W | 00 . Restart at 0 Hz <br> 01 . Resume operation after frequency matching <br> 02 . Restart with active matching frequency | 146Bh | 05227 |  |  |
| - |  | (Reserved) | - | - | 146Ch | 05228 | - | - |
| C105 | - | FM gain adjustment | R/W | 50. to 200. (\%) | 146Dh | 05229 | 50 to 200 | $1 \%$ |
| C106 | - | AM gain adjustment | R/W | 50. to 200. (\%) | 146Eh | 05230 | 50 to 200 | $1 \%$ |
| C107 | - | AMI gain adjustment | R/W | 50. to 200. (\%) | 146Fh | 05231 | 50 to 200 | $1 \%$ |
| - |  | (Reserved) | - | - | 1470h | 05232 | - | - |
| C109 | - | AM bias adjustment | R/W | 0. to 100. (\%) | 1471h | 05233 | 0 to 100 | $1 \%$ |
| C110 | - | AMI bias adjustment | R/W | 0. to 100. (\%) | 1472h | 05234 | 0 to 100 | $1 \%$ |
| C111 | - | Overload setting (2) | R/W | 0.00 x rated current to <br> 2.00 x rated current (A) | 1473h | 05235 | 0 to 1800 | 0.1 \% |
| - |  | (Reserved) | - | - | $\begin{aligned} & 1474 \mathrm{~h} \\ & \text { to } \\ & 147 \mathrm{Ch} \end{aligned}$ | $\begin{gathered} 05236 \\ \text { to } \\ 05244 \end{gathered}$ | - | - |
| C121 | - | [O] input zero calibration | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65530) \end{aligned}$ | 147Dh | 05245 | 0 to 65530 | 1 |
| C122 | - | [OI] input zero calibration | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65530) \end{aligned}$ | 147Eh | 05246 | 0 to 65530 | 1 |


| Holding Registers, "C' Group Intelligent Terminal Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| C123 | - |  | [O2] input zero calibration | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65530 \text { ) } \end{aligned}$ | 147Fh | 05247 | 0 to 65530 | 1 |
| - |  |  | (Reserved) | - | - | $\begin{gathered} 1480 \mathrm{~h} \\ \text { to } \\ 1485 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05248 \\ \text { to } \\ 05253 \end{gathered}$ | - | - |
| C130 | - | Term. [11] ON-delay time | R/W | 0.0 to 100.0 (seconds) | 1486h | 05254 | 0 to 1000 | 0.1 sec . |
| C131 | - | Term. [11] OFF-delay time | R/W | 0.0 to 100.0 (seconds) | 1487h | 05255 | 0 to 1000 | 0.1 sec . |
| C132 | - | Term. [12] ON-delay time | R/W | 0.0 to 100.0 (seconds) | 1488h | 05256 | 0 to 1000 | 0.1 sec . |
| C133 | - | Term. [12] OFF-delay time | R/W | 0.0 to 100.0 (seconds) | 1489h | 05257 | 0 to 1000 | 0.1 sec . |
| C134 | - | Term. [13] ON-delay time | R/W | 0.0 to 100.0 (seconds) | 148Ah | 05258 | 0 to 1000 | 0.1 sec . |
| C135 | - | Term. [13] OFF-delay time | R/W | 0.0 to 100.0 (seconds) | 148Bh | 05259 | 0 to 1000 | 0.1 sec . |
| C136 | - | Term. [14] ON-delay time | R/W | 0.0 to 100.0 (seconds) | 148 Ch | 05260 | 0 to 1000 | 0.1 sec . |
| C137 | - | Term. [14] OFF-delay time | R/W | 0.0 to 100.0 (seconds) | 148Dh | 05261 | 0 to 1000 | 0.1 sec . |
| C138 | - | Term. [15] ON-delay time | R/W | 0.0 to 100.0 (seconds) | 148Eh | 05262 | 0 to 1000 | 0.1 sec . |
| C139 | - | Term. [15] OFF-delay time | R/W | 0.0 to 100.0 (seconds) | 148Fh | 05263 | 0 to 1000 | 0.1 sec . |
| C140 | - | Relay output ON-delay time | R/W | 0.0 to 100.0 (seconds) | 1490h | 05264 | 0 to 1000 | 0.1 sec . |
| C141 | - | Relay output OFF-delay time | R/W | 0.0 to 100.0 (seconds) | 1491h | 05265 | 0 to 1000 | 0.1 sec . |
| C142 | - | Logic output 1 function A | R/W | All programmable output functions available (except LOG1 to LOG6) | 1492h | 05266 | - | - |
| C143 | - | Logic output 1 function B | R/W |  | 1493h | 05267 |  |  |
| C144 | - | Logic output 1 operator | R/W | $\begin{aligned} & 00 \text {..AND } \\ & 01 \text {..OR } \\ & 02 . . \mathrm{XOR} \text { (exclusive OR) } \end{aligned}$ | 1494h | 05268 | 0, 1, 2 | - |
| C145 | - | Logic output 2 function A | R/W | All programmable output functions available (except LOG1 to LOG6) | 1495h | 05269 | - | - |
| C146 | - | Logic output 2 function B | R/W |  | 1496h | 05270 |  |  |
| C147 | - | Logic output 2 operator | R/W | $\begin{aligned} & \text { 00..AND } \\ & \text { 01..OR } \\ & \text { 02..XOR (exclusive OR) } \end{aligned}$ | 1497h | 05271 | 0, 1, 2 | - |
| C148 | - | Logic output 3 function A | R/W | All programmable output functions available (except LOG1 to LOG6) | 1498h | 05272 | - | - |
| C149 | - | Logic output 3 function B | R/W |  | 1499h | 05273 |  |  |
| C150 | - | Logic output 3 operator | R/W | $\begin{aligned} & 00 \text {..AND } \\ & 01 \text {..OR } \\ & 02 . . \mathrm{XOR} \text { (exclusive OR) } \end{aligned}$ | 149Ah | 05274 | 0, 1, 2 | - |
| C151 | - | Logic output 4 function A | R/W | All programmable output functions available (except LOG1 to LOG6) | 149Bh | 05275 | - | - |
| C152 | - | Logic output 4 function B | R/W |  | 149Ch | 05276 |  |  |
| C153 | - | Logic output 4 operator | R/W | $\begin{aligned} & \text { 00..AND } \\ & \text { 01..OR } \\ & 02 \text {..XOR (exclusive OR) } \end{aligned}$ | 149Dh | 05277 | 0, 1, 2 | - |
| C154 | - | Logic output 5 function A | R/W | All programmable output functions available (except LOG1 to LOG6) | 149Eh | 05278 | - | - |
| C155 | - | Logic output 5 function B | R/W |  | 149Fh | 05279 |  |  |


| Holding Registers, "C" Group Intelligent Terminal Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| C156 | - |  | Logic output 5 operator | R/W | $\begin{aligned} & \hline \text { 00.AND } \\ & \text { 01.OR } \\ & \text { 02.XOR (exclusive OR) } \end{aligned}$ | 14A0h | 05280 | 0, 1, 2 | - |
| C157 | - |  | Logic output 6 function A | R/W | All programmable output functions available (except LOG1 to LOG6) | 14A1h | 05281 | - | - |
| C158 | - | Logic output 6 function B | R/W | 14A2h |  | 05282 |  |  |
| C159 | - | Logic output 6 operator | R/W | $\begin{array}{\|l\|} \hline \text { 00. AND } \\ \text { 01.OR } \\ \text { 02. XOR (exclusive OR) } \end{array}$ | 14A3h | 05283 | 0, 1, 2 | - |  |
| C160 | - | Terminal [1] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14A4h | 05284 | 0 to 200 | 2 ms |  |
| C161 | - | Terminal [2] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14A5h | 05285 | 0 to 200 | 2 ms |  |
| C162 | - | Terminal [3] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14A6h | 05286 | 0 to 200 | 2 ms |  |
| C163 | - | Terminal [4] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14A7h | 05287 | 0 to 200 | 2 ms |  |
| C164 | - | Terminal [5] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14A8h | 05288 | 0 to 200 | 2 ms |  |
| C165 | - | Terminal [6] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14A9h | 05289 | 0 to 200 | 2 ms |  |
| C166 | - | Terminal [7] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | $\begin{gathered} \text { 14AA } \\ \mathrm{h} \end{gathered}$ | 05290 | 0 to 200 | 2 ms |  |
| C167 | - | Terminal [8] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14ABh | 05291 | 0 to 200 | 2 ms |  |
| C168 | - | Terminal [FW] input response time setting | R/W | 0. to 200. (x 2 milliseconds) | 14ACh | 05292 | 0 to 200 | 2 ms |  |
| C169 | - | Multi-speed position determination time | R/W | 0. to 200. (x 2 milliseconds) | $\begin{gathered} 14 \mathrm{AD} \\ \mathrm{~h} \end{gathered}$ | 05293 | 0 to 200 | 2 ms |  |
| - |  | (Reserved) | - | - | $\begin{gathered} \hline 14 \mathrm{AEh} \\ \text { to } \\ 1500 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05294 \\ \text { to } \\ 05376 \end{gathered}$ | - | - |  |


| Holding Registers, "H" Group Motor Constants Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| H001 | - |  | Auto-tuning setting | R/W | 00..Auto-tuning OFF <br> 01..Auto-tune <br> 02..Auto-tune (rotate motor) | 1501h | 05377 | 0, 1, 2 | - |
| H002 | - |  | Motor data selection, 1st motor | R/W | 00..Standard motor data <br> 01 ..Auto-tuning data <br> 02..Adaptive tuning data | 1502h | 05378 | 0, 1, 2 | - |
| H202 | - | Motor data selection, 2nd motor | R/W | 00..Standard motor data <br> 01 ..Auto-tuning data <br> 02..Adaptive tuning data | 2502h | 9474 | 0, 1, 2 | - |
| H003 | - | Motor capacity, 1st motor | R/W | 0.20 to 75.00 (kW) | 153h | 05379 | 00 to 36 | - |
| H203 | - | Motor capacity, 2nd setting | R/W | 0.20 to 75.00 (kW) | 2503h | 9475 | $\begin{aligned} & \text { (see next } \\ & \text { table) } \end{aligned}$ | - |
| H004 | - | Motor poles setting, 1st motor | R/W | $00 . .2$ poles 01.. 4 poles 02.. 6 poles $03 . .8$ poles $04 . .10$ poles | 1504h | 05380 | 0 to 4 | - |
| H204 | - | Motor poles setting, 2nd motor | R/W | $00 . .2$ poles <br> $01 . .4$ poles <br> 02.. 6 poles <br> $03 . .8$ poles <br> $04 . .10$ poles | 2504h | 9476 | 0 to 4 | - |
| H005 | H | Motor speed constant, 1st motor | R/W | Motor proportional gain constant, factory set | 1505h | 05381 | 0 to 80000 | 0.001 |
| H005 | L |  | R/W |  | 1506h | 05382 |  |  |
| H205 | H | Motor speed constant, 2nd motor | R/W | Motor proportional gain constant, factory set | 2505h | 9477 | 0 to 80000 | 0.001 |
| H205 | L |  | R/W |  | 2506h | 9478 |  |  |
| H006 | - | Motor stabilization constant | R/W | 0. to 255. (factory set) | 1507h | 05383 | 0 to 255 | 1 |
| - |  | (Reserved) | - | - | $\begin{aligned} & 1508 \mathrm{~h} \\ & \text { to } \\ & 1514 \mathrm{~h} \end{aligned}$ | $\begin{gathered} 05384 \\ \text { to } \\ 05396 \end{gathered}$ | - | - |
| H206 | - | Motor stabilization constant, 2nd motor | R/W | 0. to 255. (factory set) | 2507h | 09479 | 0 to 255 | 1 |
| - |  | (Reserved) | - | - | $\begin{gathered} 2508 \mathrm{~h} \\ \text { to } \\ 2514 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 09480 \\ \text { to } \\ 09292 \end{gathered}$ | - | - |
| H306 | - | Motor stabilization constant, 3rd motor | R/W | 0. to 255. (factory set) | 3507h | 13575 | 0 to 255 | 1 |
| - |  | (Reserved) | - | - | 3508h to end | $\begin{aligned} & 13576 \\ & \text { to end } \end{aligned}$ | - | - |
| H020 | H | Motor constant R1, 1st motor | R/W | 0.001 to $9.999,10.00$ to 65.53 (Ohms) | 1515h | 05397 | 1 to 65530 | $0.001 \Omega$ |
| H020 | L |  | R/W |  | 1516h | 05398 |  |  |
| H220 | H | Motor constant R1, 2nd motor | R/W | 0.001 to $9.999,10.00$ to 65.53 (Ohms) | 2515h | 09293 | 1 to 65530 | $0.001 \Omega$ |
| H220 | L |  | R/W |  | 2516h | 09294 |  |  |
| H021 | H | Motor constant R2, 1st motor | R/W | 0.001 to $9.999,10.00$ to 65.53 (Ohms) | 1517h | 05399 | 1 to 65530 | $0.001 \Omega$ |
| H021 | L |  | R/W |  | 1518h | 05400 |  |  |


| Holding Registers, "H" Group Motor Constants Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| H221 | H |  | Motor constant R2, 2nd motor | R/W | $0.001 \text { to } 9.999,10.00 \text { to }$$65.53 \text { (Ohms) }$ | 2517h | 09495 | 1 to 65530 | $0.001 \Omega$ |
| H221 | L |  |  | R/W |  | 2518h | 09496 |  |  |
| H022 | H | Motor constant L, 1st motor | R/W | $\begin{aligned} & 0.01 \text { to } 99.99, \\ & 100.0-655.3(\mathrm{mH}) \end{aligned}$ | 1519h | 05401 | 1 to 65530 | 0.01 mH |  |
| H022 | L |  | R/W |  | 151Ah | 05402 |  |  |  |
| H222 | H | Motor constant L, 2nd motor | R/W | $\begin{array}{\|l\|} \hline 0.01 \text { to } 99.99, \\ 100.0-655.3(\mathrm{mH}) \end{array}$ | 2519h | 09497 | 1 to 65530 | 0.01 mH |  |
| H222 | L |  | R/W |  | 251Ah | 09498 |  |  |  |
| H023 | H | Motor constant Io | R/W | $\begin{aligned} & 0.01 \text { to } 99.99, \\ & 100.0-655.3 \text { (A) } \end{aligned}$ | 151Bh | 05403 | 1 to 65530 | 0.01 A |  |
| H023 | L |  | R/W |  | 151Ch | 05404 |  |  |  |
| H223 | H | Motor constant Io, 2nd motor | R/W | $\begin{aligned} & 0.01 \text { to } 99.99, \\ & 100.0-655.3 \text { (A) } \end{aligned}$ | 251Bh | 09499 | 1 to 65530 | 0.01 A |  |
| H223 | L |  | R/W |  | 251 Ch | 09500 |  |  |  |
| H024 | H | Motor Constant J | R/W | 0.001 to 9.999 , 10.00 to 99.99 , 100.0 to 999.9 , 1000 to 9999 . | 151Dh | 05405 | $\begin{gathered} 1 \text { to } \\ 9999000 \end{gathered}$ | - |  |
| H024 | L |  | R/W |  | 151Eh | 05406 |  |  |  |
| - |  | (Reserved) | - | - | $\begin{aligned} & 151 \mathrm{Fh} \\ & \text { to } \\ & 1523 \mathrm{~h} \end{aligned}$ | $\begin{gathered} 05407 \\ \text { to } \\ 05411 \end{gathered}$ | - | - |  |
| H224 | H | Motor constant J, 2nd motor | R/W | 0.001 to 9.999 , <br> 10.00 to 99.99 , <br> 100.0 to 999.9 , <br> 1000 to 9999 . | 251Dh | 09501 | $\begin{gathered} 1 \text { to } \\ 9999000 \end{gathered}$ | - |  |
| H224 | L |  | R/W |  | 251Eh | 09502 |  |  |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 221 \mathrm{Fh} \\ \text { to } \\ 2523 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 09503 \\ \text { to } \\ 09507 \end{gathered}$ | - | - |  |
| H030 | H | Auto constant R1, 1st motor | R/W | $\begin{aligned} & 0.001 \text { to } 9.999, \\ & 10.00 \text { to } 65.53 \text { (Ohms) } \end{aligned}$ | 1524h | 05412 | 1 to 65530 | $0.001 \Omega$ |  |
| H030 | L |  | R/W |  | 1525h | 05413 |  |  |  |
| H230 | H | Auto constant R1, 2nd motor | R/W | $\begin{aligned} & 0.001 \text { to } 9.999, \\ & 10.00 \text { to } 65.53 \text { (Ohms) } \end{aligned}$ | 2524h | 09508 | 1 to 65530 | $0.001 \Omega$ |  |
| H230 | L |  | R/W |  | 2525h | 09509 |  |  |  |
| H031 | H | Auto constant R2, 1st motor | R/W | $\begin{array}{\|l} \hline 0.001 \text { to } 9.999, \\ 10.00 \text { to } 65.53 \text { (Ohms) } \end{array}$ | 1526h | 05414 | 1 to 65530 | $0.001 \Omega$ |  |
| H031 | L |  | R/W |  | 1527h | 05415 |  |  |  |
| H231 | H | Auto constant R2, 2nd motor | R/W | $\begin{aligned} & 0.001 \text { to } 9.999, \\ & 10.00 \text { to } 65.53 \text { (Ohms) } \end{aligned}$ | 2526h | 09510 | 1 to 65530 | $0.001 \Omega$ |  |
| H231 | L |  | R/W |  | 2527h | 09511 |  |  |  |
| H032 | H | Auto constant L, 1st motor | R/W | $\begin{aligned} & 0.01 \text { to } 99.99, \\ & 100.0 \text { to } 655.3(\mathrm{mH}) \end{aligned}$ | 1528h | 05416 | 1 to 65530 | 0.01 mH |  |
| H032 | L |  | R/W |  | 1529h | 05417 |  |  |  |
| H232 | H | Auto constant L, 2nd motor | R/W | 0.01 to 99.99 , <br> 100.0 to $655.3(\mathrm{mH})$ | 2528h | 09512 | 1 to 65530 | 0.01 mH |  |
| H232 | L |  | R/W |  | 2529h | 09513 |  |  |  |
| H033 | H | Auto constant Io, 1st motor | R/W | $\begin{array}{\|l\|} \hline 0.01 \text { to } 99.99, \\ 100.0 \text { to } 655.3(\mathrm{mH}) \end{array}$ | 152Ah | 05418 | 1 to 65530 | 0.01 mH |  |
| H033 | L |  | R/W |  | 152Bh | 05419 |  |  |  |
| H233 | H | Auto constant Io, 2nd motor | R/W | 0.01 to 99.99 , <br> 100.0 to $655.3(\mathrm{mH})$ | 252Ah | 09514 | 1 to 65530 | 0.01 mH |  |
| H233 | L |  | R/W |  | 252Bh | 09515 |  |  |  |


| Holding Registers, "H" Group Motor Constants Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| H034 | H |  | Auto constant J, 1st motor | R/W | 0.001 to 9.999,10.00 to 99.99,100.0 to 999.9,1000 to 9999. | 152Ch | 05420 | $\begin{gathered} 1 \text { to } \\ 9999000 \end{gathered}$ | 0.001 |
| H034 | L |  |  | R/W |  | 152Dh | 05421 |  |  |
| H234 | H | Auto constant J, 1st motor | R/W | 0.001 to 9.999 , 10.00 to 99.99 , 100.0 to 999.9 , 1000 to 9999. | 252Ch | 09516 | $\begin{gathered} 1 \text { to } \\ 9999000 \end{gathered}$ | 0.001 |  |
| H234 | L |  | R/W |  | 252Dh | 09517 |  |  |  |
| - |  | (Reserved) | - | - | $\begin{aligned} & 152 \mathrm{Eh} \\ & \text { to } \\ & 153 \mathrm{Ch} \end{aligned}$ | $\begin{gathered} 05422 \\ \text { to } \\ 05436 \end{gathered}$ | - | - |  |
| H050 | - | PI proportional gain for 1st motor | R/W | 0.0 to 999.9, 1000. | 153Dh | 05437 | 0 to 10000 | 0.1 \% |  |
| H250 | - | PI proportional gain for 2nd motor | R/W | 0.0 to 999.9, 1000. | 253Dh | 09533 | 0 to 10000 | 0.1 \% |  |
| H051 | - | PI integral gain for 1st motor | R/W | 0.0 to 999.9, 1000. | 153Eh | 05438 | 0 to 10000 | 0.1 \% |  |
| H251 | - | PI integral gain for 2nd motor | R/W | 0.0 to 999.9, 1000. | 253Eh | 09534 | 0 to 10000 | 0.1 \% |  |
| H052 | - | P proportional gain setting for 1st motor | R/W | 0.01 to 10.00 | 153Fh | 05439 | 0 to 1000 | 0.01 |  |
| - |  | (Reserved) | - | - | $\begin{aligned} & 1540 \mathrm{~h} \\ & \text { to } \\ & 1546 \mathrm{~h} \end{aligned}$ | $\begin{gathered} 05440 \\ \text { to } \\ 05446 \end{gathered}$ | - | - |  |
| H252 | - | P proportional gain setting for 2nd motor | R/W | 0.01 to 10.00 | 253 Fh | 09535 | 0 to 1000 | 0.01 |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 2540 \mathrm{~h} \\ \text { to } \\ 2546 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 09536 \\ \text { to } \\ 09542 \end{gathered}$ | - | - |  |
| H060 | - | Zero LV limit for 1st motor | R/W | 0.0 to 100.0 | 1547h | 05447 | 0 to 1000 | 0.1 \% |  |
| H260 | - | Zero LV limit for 2nd motor | R/W | 0.0 to 100.0 | 2547h | 09543 | 0 to 1000 | 0.1 \% |  |
| H061 | - | Zero LV starting boost current for 1st motor | R/W | 0. to 50. (\%) | 1548h | 05448 | 0 to 50 | $1 \%$ |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 1549 \mathrm{~h} \\ \text { to } \\ 1550 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05449 \\ \text { to } \\ 05456 \end{gathered}$ | - | - |  |
| H261 | - | Zero LV starting boost current for 2nd motor | R/W | 0. to 50. (\%) | 2548h | 09544 | 0 to 50 | $1 \%$ |  |
| - |  | (Reserved) | - | - | $\begin{gathered} 2549 \mathrm{~h} \\ \text { to } \\ 3102 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 09545 \\ \text { to } \\ 12546 \end{gathered}$ | - | - |  |
| H070 | - | Terminal selection PI proportional gain setting | R/W | 0.0 to 999.9, 1000 | 1551h | 05457 | 0 to 10000 | 0.1 \% |  |
| H071 | - | Terminal selection PI integral gain setting | R/W | 0.0 to 999.9, 1000 | 1552h | 05458 | 0 to 10000 | 0.1 \% |  |
| H072 | - | Terminal selection P proportional gain setting | R/W | 0.00 to 10.00 | 1553h | 05459 | 0 to 1000 | 0.01 |  |


| Holding Registers, "H" Group Motor Constants Functions |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | R/W | Description | Network Data |  |  |  |
|  |  |  |  | Register |  | Range | Res. |
|  |  |  |  | hex | dec. |  |  |
| H073 - | Gain switching time | R/W | 0. to 999. (milliseconds) | 1554h | 05460 | 0 to 9999 | 1 msec . |
| - | (Reserved) | - | - | $\begin{gathered} 1555 \mathrm{~h} \\ \text { to } \\ 1600 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05461 \\ \text { to } \\ 05632 \end{gathered}$ | - | - |

Use the codes in the table below to return parameters for H 003 and H 203 (motor capacity selection).

| Code Data | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{0 2}$ | $\mathbf{0 3}$ | $\mathbf{0 4}$ | $\mathbf{0 5}$ | $\mathbf{0 6}$ | $\mathbf{0 7}$ | $\mathbf{0 8}$ | $\mathbf{0 9}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Japan or U.S.A. mode <br> (B085 = 00 or 02) | 0.2 kW | - | 0.4 | - | 0.75 | - | 1.5 | 2.2 | - | 3.7 | - |
| EU mode (B085=01) | 0.2 kW | 0.37 | - | 0.55 | 0.75 | 1.1 | 1.5 | 2.2 | 3.0 | - | 4.0 |
| Code Data | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ |
| Japan or U.S.A. mode <br> (B085 = 00 or 02) | 5.5 kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| EU mode (B085=01) | 5.5 kW | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| Code Data | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ | $\mathbf{3 1}$ | $\mathbf{3 2}$ |
| Japan or U.S.A. mode <br> (B085 $=00$ or 02) | 90 kW | 110 | 132 | 150 | 160 | 185 | 200 | 220 | 250 | 280 | 300 |
| EU mode (B085=01) | 90 kW | 110 | 132 | 150 | 160 | 185 | 300 | 220 | 250 | 280 | 300 |
| Code Data | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ |  |  |  |  |  |  |  |
| Japan or U.S.A. mode <br> (B085 = 00 or 02) | 315 kW | 340 | 355 | 400 |  |  |  |  |  |  |  |
| EU mode (B085=01) | 315 kW | 340 | 355 | 400 |  |  |  |  |  |  |  |


| Holding Registers, "P" Group Expansion Card Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| P001 | - |  | Operation mode on expansion card 1 error | R/W | 00..Trip (stop motor) <br> 01..Continuous operation | 1601h | 05633 | 0,1 | - |
| P002 | - |  | Operation mode on expansion card 2 error | R/W | 00..Trip (stop motor) <br> 01..Continuous operation | 1602h | 05634 | 0,1 | - |
| - |  | (Reserved) | - | - | $\begin{gathered} 1603 \mathrm{~h} \\ \text { to } \\ 160 \mathrm{Ah} \end{gathered}$ | $\begin{gathered} 05635 \\ \text { to } \\ 05642 \end{gathered}$ | - | - |
| P011 | - | Encoder pulse-per-revolution (PPR) setting | R/W | 128 to 65000 (pulses per revolution) | 160Bh | 05643 | $\begin{aligned} & 128 \text { to } \\ & 65000 \end{aligned}$ | 1 |
| P012 | - | Control pulse setting | R/W | 00..Automatic Speed Regulation (ASR) mode <br> 01..Automatic Position Regulation (APR) mode 02..Absolute Position Control 03..High-resolution Absolute Position Control | 160Ch | 05644 | 0,1 | - |
| P013 | - | Pulse line mode setting | R/W | 00..Quadrature mode <br> 01..Count and direction <br> 02..Separate forward and reverse pulse trains | 160Dh | 05645 | 0, 1, 2 | - |
| P014 | - | Home search stop position setting | R/W | 0. to 4095. (pulses) | 160Eh | 05646 | 0 to 4095 | 1 pulse |
| P015 | - | Home search speed setting | R/W | Start frequency to maximum frequency (up to 120.0) (Hz) | 160Fh | 05647 | 0 to 12000 | 0.01 Hz |
| P016 | - | Home search direction setting | R/W | 00..Forward 01 ..Reverse | 1610h | 05648 | 0,1 | - |
| P017 | - | Home search completion range setting | R/W | $\begin{aligned} & \text { 0. to } 9999 ., \\ & 1000(10,000) \text { (pulses) } \end{aligned}$ | 1611h | 05649 | 0 to 10000 | 1 |
| P018 | - | Home search completion delay time setting | R/W | 0.00 to 9.99 (seconds) | 1612h | 05650 | 0 to 999 | 0.01 sec . |
| P019 | - | Electronic gear set position selection | R/W | 00..Position feedback side 01 ..Position command side | 1613h | 05651 | 0,1 | - |
| P020 | - | Electronic gear ratio numerator setting | R/W | 0. to 9999. | 1614h | 05652 | 1 to 9999 | - |
| P021 | - | Electronic gear ratio denominator setting | R/W | 1 to 9999 | 1615h | 05653 | 1 to 9999 | - |
| P022 | - | Feed-forward gain setting | R/W | 0.00 to $99.99,100.0$ to 655.3 | 1616h | 05654 | 0 to 65535 | 0.01 |
| P023 | - | Position loop gain setting | R/W | 0.00 to 99.99, 100.0 | 1617h | 05655 | 0 to 10000 | 0.01 |
| P024 | - | Position bias setting | R/W | -204 (-2048) / -999. to 2048 | 1618h | 05656 | $\begin{gathered} -2048 \text { to } \\ 2048 \end{gathered}$ | 1 |
| P025 | - | Temperature compensation thermistor enable | R/W | 00..No compensation 01..With compensation | 1619h | 05657 | 0, 1 | - |
| P026 | - | Over-speed error detection level setting | R/W | 0.0 to 150.0 (\%) | 161Ah | 05658 | 0 to 1500 | 0.1 \% |
| P027 | - | Speed deviation error detection level setting | R/W | $\begin{array}{\|l\|} \hline 0.00 \text { to } 99.99, \\ 100.0 \text { to } 120.0(\mathrm{~Hz}) \end{array}$ | 161Bh | 05659 | 0 to 12000 | 0.01 Hz |


| Holding Registers, "P" Group Expansion Card Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| P028 | - |  | Numerator of motor gear ratio | R/W | 0. to 9999. | 161Ch | 05660 | 1 to 9999 | 1 |
| P029 | - |  | Denominator of motor gear ratio | R/W | 1 to 9999 | 161Dh | 05661 | 1 to 9999 | 1 |
| - |  | (Reserved) | - | - | 161Eh | 05662 | - | - |
| P031 | - | Accel/decel time input selection | R/W | 00 . Inverter <br> 01 .Expansion card 1 <br> 02 . Expansion card 2 | 161Fh | 05663 | 0, 1, 2 | - |
| P032 | - | Positioning command input selection | R/W | 00 . Inverter <br> 01 . Expansion card 1 <br> 02 . Expansion card 2 | 1620h | 05664 | 0, 1, 2 | - |
| P033 | - | Torque command input selection | R/W | 00.[O] terminal <br> 01 .[OI] terminal <br> 02 .[O2] terminal <br> 03 . Inverter keypad (P034) | 1621h | 05665 | 0 to 3 |  |
| P034 | - | Torque command setting | R/W | 0. to 200. (\%) | 1622h | 05666 | 0 to 180 | 1\% |
| P035 | - | Torque command polarity selection | R/W | 00 . Indicated by signal polarity <br> 01 . Depends on motor direction | 1623h | 05667 | 0,1 | - |
| P036 | - | Torque bias mode | R/W | 00 . Disable <br> 01 . Inverter keypad (P037) <br> 02 .[O2] terminal input | 1624h | 05668 | 0, 1, 2 | - |
| P037 | - | Torque bias value | R/W | -200. to 200. (\%) | 1625h | 05669 | 0 to 180 | 1 |
| P038 | - | Torque bias polarity selection | R/W | 00 . Indicated by polarity 01 . Depends on motor direction | 1626h | 05670 | 0,1 | - |
| P039 | H | Forward maximum speed | R/W | 0.00 to Maximum frequency | 1627h | 05671 | 0 to max. | 0.01 Hz |
| P039 | L | for torque-controlled operation | R/W |  | 1628h | 05672 | frequency <br> (up to <br> 40000) |  |
| P040 | H |  | R/W | 0.00 to Maximum frequency | 1629h | 05673 | 0 to max. | 0.01 Hz |
| P040 | L | for torque-controlled operation | R/W |  | 162Ah | 05674 | frequency (up to 40000 ) <br> 40000) |  |
| - |  | (Reserved) | - | - | 162Bh | 05675 | - | - |
| - |  | (Reserved) | - | - | 162 Ch | 05676 | - | - |
| - |  | (Reserved) | - | - | 162Dh | 05677 | - | - |
| P044 | - | DeviceNet comm watchdog timer | R/W | 0.00 to 99.99 (seconds) | 162Eh | 05678 | 0 to 9999 | 0.01 sec . |
| P045 | - | Inverter action on DeviceNet comm error | R/W | 00 .Trip <br> 01 .Decelerate and trip <br> 02 . Hold last speed <br> 03 . Free run stop <br> 04 . Decelerate and stop | 162Fh | 05679 | 0 to 4 | - |
| P046 | - | DeviceNet polled I/O: Output instance number | R/W | 20, 21, 100 | 1630h | 05680 | $\begin{aligned} & 20,21, \\ & 100 \end{aligned}$ | - |


| Holding Registers, "P" Group Expansion Card Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| P047 | - |  | DeviceNet polled I/O: Input instance number | R/W | 70, 71, 101 | 1631h | 05681 | $\begin{aligned} & \hline 70,71, \\ & 101 \end{aligned}$ | - |
| P048 | - |  | Inverter action on DeviceNet idle mode | R/W | 00..Trip <br> 01 ..Decelerate and trip <br> 02..Hold last speed <br> 03..Free run stop <br> 04..Decelerate and stop | 1632h | 05682 | 0 to 4 | - |
| P049 | - | Motor poles setting for RPM | R/W | 00 to 38 (even numbers only) | 1633h | 05683 | 0 to 19 | $\begin{gathered} 1= \\ 2 \text { poles } \end{gathered}$ |
| - | - | (Reserved) | - | - | $\begin{gathered} 1634 \mathrm{~h} \\ \text { to } \\ 1638 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05684 \\ \text { to } \\ 05688 \end{gathered}$ | - | - |
| P055 | - | Pulse train frequency span | R/W | 1.0 to 50.0 (kHz) | 1639h | 05689 | 10 to 500 | 0.1 kHz |
| P056 | - | Pulse train frequency time constant | R/W | 0.01 to 2.00 (seconds) | 163Ah | 05690 | 1 to 200 | 0.01 sec . |
| P057 | - | Pulse train frequency bias | R/W | -100. to 100. (\%) | 163Bh | 05691 | $\begin{gathered} -100 \text { to } \\ 100 \end{gathered}$ | $1 \%$ |
| P058 | - | Pulse train frequency limit | R/W | 0. to 100. (\%) | 163Ch | 05692 | 0 to 100 | 1\% |
| - |  | (Reserved) | - | - | 163Dh | 05693 | - | - |
| P060 | H | Multi-stage position setting 0 | R/W | Reverse side to forward side (upper four digits including sign "-") | 163Eh | 05694 | - | - |
| P060 | L |  | R/W |  | 163Fh | 05695 |  |  |
| P061 | H | Multi-stage position setting 1 | R/W | Reverse side to forward side (upper four digits including sign "-") | 1640h | 05696 | - | - |
| P061 | L |  | R/W |  | 1641h | 05697 |  |  |
| P062 | H | Multi-stage position setting 2 | R/W | Reverse side to forward side (upper four digits including sign "-") | 1642h | 05698 | - | - |
| P062 | L |  | R/W |  | 1643h | 05699 |  |  |
| P063 | H | Multi-stage position setting 3 | R/W | Reverse side to forward side (upper four digits including sign "-") | 1644h | 05700 | - | - |
| P063 | L |  | R/W |  | 1645h | 05701 |  |  |
| P064 | H | Multi-stage position setting 4 | R/W | Reverse side to forward side (upper four digits including sign "-") | 1646h | 05702 | - | - |
| P064 | L |  | R/W |  | 1647h | 05703 |  |  |
| P065 | H | Multi-stage position setting 5 | R/W | Reverse side to forward side (upper four digits including sign "-") | 1648h | 05704 | - | - |
| P065 | L |  | R/W |  | 1649h | 05705 |  |  |
| P066 | H | Multi-stage position setting 6 | R/W | Reverse side to forward side (upper four digits including sign "-") | 164Ah | 05706 | - | - |
| P066 | L |  | R/W |  | 164Bh | 05707 |  |  |
| P067 | H | Multi-stage position setting 7 | R/W | Reverse side to forward side (upper four digits including sign "-") | 164Ch | 05708 | - | - |
| P067 | L |  | R/W |  | 164Dh | 05709 |  |  |
| P068 | - | Home position mode selection | R/W | 00..Low <br> 01 ..High <br> 02..High 2 | 164Eh | 05710 | 0, 1, 2 | - |
| P069 | - | Home position direction selection | R/W | 00..Forward 01..Reverse | 164Fh | 05711 | 0,1 | - |


| Holding Registers, "P' Group Expansion Card Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| P070 | - |  | Low speed homing frequency | R/W | 0.00 to 10.00 (Hz) | 1650h | 05712 | 0 to 1000 | 0.01 Hz |
| P071 | - |  | High speed homing frequency | R/W | 0.00 to 99.99 / 100.0 to maximum frequency setting, 1st motor (Hz) | 1651h | 05713 | 0 to 40000 | 0.01 Hz |
| P072 | H | Forward position range setting | R/W | $\begin{aligned} & 0 \text { to } 536870912 \text { (when P012 } \\ & =02 \text { ), } 0 \text { to } 2147483647 \\ & \text { (when P013 = 03) (upper } \\ & \text { four digits) } \end{aligned}$ | 1652h | 05714 | See description | 1 |
| P072 | L |  | R/W |  | 1653h | 05715 |  |  |
| P073 | H | Reverse position range | R/W | $\begin{aligned} & 0 \text { to } 536870912 \text { (when P012 } \\ & =02 \text { ), } 0 \text { to } 2147483647 \\ & \text { (when P013 }=03 \text { ) (upper } \\ & \text { four digits) } \end{aligned}$ | 1654h | 05716 | See description | 1 |
| P073 | L |  | R/W |  | 1655h | 05717 |  |  |
| - |  | (Reserved) | - | - | $\begin{aligned} & 1656 \mathrm{~h} \\ & \text { to } \\ & 1665 \mathrm{~h} \end{aligned}$ | $\begin{gathered} 05718 \\ \text { to } \\ 05733 \end{gathered}$ | - | - |
| P100 | - | Easy sequence parameter (U00) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 1666h | 05734 | 0 to 65530 | 1 |
| P101 | - | Easy sequence parameter (U01) | R/W | 0. to 9999., 1000 to 6553 <br> (10000 to 65535) | 1667h | 05735 | 0 to 65530 | 1 |
| P102 | - | Easy sequence parameter (U02) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 1668h | 05736 | 0 to 65530 | 1 |
| P103 | - | Easy sequence parameter (U03) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 1669h | 05737 | 0 to 65530 | 1 |
| P104 | - | Easy sequence parameter (U04) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 166Ah | 05738 | 0 to 65530 | 1 |
| P105 | - | Easy sequence parameter (U05) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 166Bh | 05739 | 0 to 65530 | 1 |
| P106 | - | Easy sequence parameter (U06) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 166Ch | 05740 | 0 to 65530 | 1 |
| P107 | - | Easy sequence parameter (U07) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 166Dh | 05741 | 0 to 65530 | 1 |
| P108 | - | Easy sequence parameter (U08) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 166Eh | 05742 | 0 to 65530 | 1 |
| P109 | - | Easy sequence parameter (U09) | R/W | 0. to 9999., 1000 to 6553 <br> (10000 to 65535) | 166Fh | 05743 | 0 to 65530 | 1 |
| P110 | - | Easy sequence parameter (U10) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 1670h | 05744 | 0 to 65530 | 1 |
| P111 | - | Easy sequence parameter (U11) | R/W | $\text { 0. to } 9999 \text {., } 1000 \text { to } 6553$ $\text { (10000 to } 65535 \text { ) }$ | 1671h | 05745 | 0 to 65530 | 1 |
| P112 | - | Easy sequence parameter (U12) | R/W | 0. to 9999., 1000 to 6553 (10000 to 65535) | 1672h | 05746 | 0 to 65530 | 1 |
| P113 | - | Easy sequence parameter (U13) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535 \text { ) } \end{aligned}$ | 1673h | 05747 | 0 to 65530 | 1 |
| P114 | - | Easy sequence parameter (U14) | R/W | 0. to 9999., 1000 to 6553 <br> (10000 to 65535) | 1674h | 05748 | 0 to 65530 | 1 |
| P115 | - | Easy sequence parameter (U15) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535) \end{aligned}$ | 1675h | 05749 | 0 to 65530 | 1 |


| Holding Registers, "P" Group Expansion Card Functions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code |  | Name | R/W | Description | Network Data |  |  |  |
|  |  | Register |  |  | Range | Res. |
|  |  | hex |  |  |  |  | dec. |
| P116 | - |  | Easy sequence parameter (U16) | R/W | $\begin{aligned} & \hline \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1676h | 05750 | 0 to 65530 | 1 |
| P117 | - |  | Easy sequence parameter (U17) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1677h | 05751 | 0 to 65530 | 1 |
| P118 | - | Easy sequence parameter (U18) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1678h | 05752 | 0 to 65530 | 1 |
| P119 | - | Easy sequence parameter (U19) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1679h | 05753 | 0 to 65530 | 1 |
| P120 | - | Easy sequence parameter (U20) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 167Ah | 05754 | 0 to 65530 | 1 |
| P121 | - | Easy sequence parameter (U21) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 167Bh | 05755 | 0 to 65530 | 1 |
| P122 | - | Easy sequence parameter (U22) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535) \end{aligned}$ | 167Ch | 05756 | 0 to 65530 | 1 |
| P123 | - | Easy sequence parameter (U23) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535) \end{aligned}$ | 167Dh | 05757 | 0 to 65530 | 1 |
| P124 | - | Easy sequence parameter (U24) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535) \end{aligned}$ | 167Eh | 05758 | 0 to 65530 | 1 |
| P125 | - | Easy sequence parameter (U25) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535) \end{aligned}$ | 167Fh | 05759 | 0 to 65530 | 1 |
| P126 | - | Easy sequence parameter (U26) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535) \end{aligned}$ | 1680h | 05760 | 0 to 65530 | 1 |
| P127 | - | Easy sequence parameter (U27) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1681h | 05761 | 0 to 65530 | 1 |
| P128 | - | Easy sequence parameter (U28) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1682h | 05762 | 0 to 65530 | 1 |
| P129 | - | Easy sequence parameter (U29) | R/W | $\begin{array}{\|l} \begin{array}{l} \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ \text { (10000 to } 65535) \\ \hline \end{array} \\ \hline \end{array}$ | 1683h | 05763 | 0 to 65530 | 1 |
| P130 | - | Easy sequence parameter (U30) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & \text { (10000 to } 65535 \text { ) } \end{aligned}$ | 1684h | 05764 | 0 to 65530 | 1 |
| P131 | - | Easy sequence parameter (U31) | R/W | $\begin{aligned} & \text { 0. to } 9999 ., 1000 \text { to } 6553 \\ & (10000 \text { to } 65535 \text { ) } \end{aligned}$ | 1685h | 05765 | 0 to 65530 | 1 |
| - |  | (Reserved) | - | - | $\begin{gathered} 1686 \mathrm{~h} \\ \text { to } \\ 2102 \mathrm{~h} \end{gathered}$ | $\begin{gathered} 05766 \\ \text { to } \\ 08450 \end{gathered}$ | - | - |

## Drive Parameter Settings Tables

In This Appendix....page- Introduction ..... 2
- Parameter Settings for Keypad Entry ..... 2


## Introduction

This appendix lists the user-programmable parameters for the SJ7002 series inverters and the default values for European, U.S. and Japanese product types. The right-most column of the tables is blank so you can record values you have changed from the default. This involves just a few parameters for most applications.

## Parameter Settings for Keypad Entry

SJ7002 series inverters provide many functions and parameters that can be configured by the user. We recommend that you record all parameters that have been edited, in order to help in troubleshooting or recovery from a loss of parameter data.


## Main Profile Parameters

| "F"' Group Parameters |  | Default Setting |  |  | User <br> Setting |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | FU2, FU2 <br> (U.S.A.) | FF2, F2 <br> (Japan) |  |
| F001 | Output frequency setting | 0.00 | 0.00 | 0.00 |  |
| F002 | Acceleration (1) time setting | 30.0 | 30.0 | 30.0 |  |
| F202 | Acceleration (1) time setting, 2nd motor | 30.0 | 30.0 | 30.0 |  |
| F302 | Acceleration (1) time setting, 3rd motor | 30.0 | 30.0 | 30.0 |  |
| F003 | Deceleration (1) time setting | 30.0 | 30.0 | 30.0 |  |
| F203 | Deceleration (1) time setting, 2nd motor | 30.0 | 30.0 | 30.0 |  |
| F303 | Deceleration (1) time setting, 3rd motor | 30.0 | 30.0 | 30.0 |  |
| F004 | Keypad Run key routing | 00 | 00 | 00 |  |

## Standard

 Functions| "A" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| A001 | Frequency source setting | 01 | 01 | 02 |  |
| A002 | Run command source setting | 01 | 01 | 02 |  |
| A003 | Base frequency setting | 50. | 60. | 60. |  |
| A203 | Base frequency setting, 2nd motor | 50. | 60. | 60. |  |
| A303 | Base frequency setting, 3rd motor | 50. | 60. | 60. |  |
| A004 | Maximum frequency setting | 50. | 60. | 60. |  |
| A204 | Maximum frequency setting, 2nd motor | 50. | 60. | 60. |  |
| A304 | Maximum frequency setting, 3rd motor | 50. | 60. | 60. |  |
| A005 | [AT] selection | 00 | 00 | 00 |  |
| A006 | [O2] selection | 03 | 03 | 03 |  |
| A011 | [O]-[L] input active range start frequency | 0.00 | 0.00 | 0.00 |  |
| A012 | [O]-[L] input active range end frequency | 0.00 | 0.00 | 0.00 |  |
| A013 | [O]-[L] input active range start voltage | 0. | 0. | 0. |  |
| A014 | [O]-[L] input active range end voltage | 100. | 100. | 100. |  |
| A015 | [O]-[L] input start frequency enable | 01 | 01 | 01 |  |
| A016 | External frequency filter time const. | 8. | 8. | 8. |  |
| A017 | Easy sequence function enable | 00 | 00 | 00 |  |
| A019 | Multi-speed operation selection | 00 | 00 | 00 |  |
| A020 | Multi-speed frequency setting | 0.00 | 0.00 | 0.00 |  |
| A220 | Multi-speed frequency setting, 2nd motor | 0.00 | 0.00 | 0.00 |  |
| A320 | Multi-speed frequency setting, 3rd motor | 0.00 | 0.00 | 0.00 |  |
| A021 | Multi-speed 1 setting | 0.00 | 0.00 | 0.00 |  |
| A022 | Multi-speed 2 setting | 0.00 | 0.00 | 0.00 |  |
| A023 | Multi-speed 3 setting | 0.00 | 0.00 | 0.00 |  |
| A024 | Multi-speed 4 setting | 0.00 | 0.00 | 0.00 |  |
| A025 | Multi-speed 5 setting | 0.00 | 0.00 | 0.00 |  |
| A026 | Multi-speed 6 setting | 0.00 | 0.00 | 0.00 |  |
| A027 | Multi-speed 7 setting | 0.00 | 0.00 | 0.00 |  |
| A028 | Multi-speed 8 setting | 0.00 | 0.00 | 0.00 |  |
| A029 | Multi-speed 9 setting | 0.00 | 0.00 | 0.00 |  |
| A030 | Multi-speed 10 setting | 0.00 | 0.00 | 0.00 |  |
| A031 | Multi-speed 11 setting | 0.00 | 0.00 | 0.00 |  |
| A032 | Multi-speed 12 setting | 0.00 | 0.00 | 0.00 |  |
| A033 | Multi-speed 13 setting | 0.00 | 0.00 | 0.00 |  |


| "A" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| A034 | Multi-speed 14 setting | 0.00 | 0.00 | 0.00 |  |
| A035 | Multi-speed 15 setting | 0.00 | 0.00 | 0.00 |  |
| A038 | Jog frequency setting | 1.00 | 1.00 | 1.00 |  |
| A039 | Jog stop mode | 00 | 00 | 00 |  |
| A041 | Torque boost method selection | 00 | 00 | 00 |  |
| A241 | Torque boost method selection, 2nd motor | 00 | 00 | 00 |  |
| A042 | Manual torque boost value | 1.0 | 1.0 | 1.0 |  |
| A242 | Manual torque boost value, 2nd motor | 1.0 | 1.0 | 1.0 |  |
| A342 | Manual torque boost value, 3rd motor | 1.0 | 1.0 | 1.0 |  |
| A043 | Manual torque boost frequency adjustment | 5.0 | 5.0 | 5.0 |  |
| A243 | Manual torque boost frequency adjustment, 2nd motor | 5.0 | 5.0 | 5.0 |  |
| A343 | Manual torque boost frequency adjustment, 3rd motor | 5.0 | 5.0 | 5.0 |  |
| A044 | V/F characteristic curve selection | 00 | 00 | 00 |  |
| A244 | V/F characteristic curve selection, 2nd motor | 00 | 00 | 00 |  |
| A344 | V/F characteristic curve selection, 3rd motor | 00 | 00 | 00 |  |
| A045 | V/f gain setting | 100. | 100. | 100. |  |
| A046 | Automatic torque boost voltage gain | 100. | 100. | 100. |  |
| A246 | Automatic torque boost voltage gain, 2nd motor | 100. | 100. | 100. |  |
| A047 | Automatic torque boost slip gain | 100. | 100. | 100. |  |
| A247 | Automatic torque boost slip gain, 2nd motor | 100. | 100. | 100. |  |
| A051 | DC braking enable | 00 | 00 | 00 |  |
| A052 | DC braking frequency setting | 0.50 | 0.50 | 0.50 |  |
| A053 | DC braking wait time | 0.0 | 0.0 | 0.0 |  |
| A054 | DC braking force during deceleration | 0. | 0. | 0. |  |
| A055 | DC braking time for deceleration | 0.0 | 0.0 | 0.0 |  |
| A056 | DC braking / edge or level detection for [DB] input | 01 | 01 | 01 |  |
| A057 | DC braking force for starting | 0. | 0. | 0. |  |
| A058 | DC braking time for starting | 0.0 | 0.0 | 0.0 |  |
| A059 | DC braking carrier frequency setting | 5.0 | 5.0 | 5.0 |  |
| A061 | Frequency upper limit setting | 0.00 | 0.00 | 0.00 |  |
| A261 | Frequency upper limit setting, 2nd motor | 0.00 | 0.00 | 0.00 |  |
| A062 | Frequency lower limit setting | 0.00 | 0.00 | 0.00 |  |
| A262 | Frequency lower limit setting, 2nd motor | 0.00 | 0.00 | 0.00 |  |
| $\begin{array}{\|l} \mathrm{A} 063, \\ \text { A065, } \\ \text { A067 } \end{array}$ | Jump (center) frequency setting | 0.00 | 0.00 | 0.00 |  |


| "A" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 (Japan) |  |
| $\begin{array}{\|l\|} \hline \text { A064, } \\ \text { A066, } \\ \text { A068 } \end{array}$ | Jump (hysteresis) frequency width setting | 0.50 | 0.50 | 0.50 |  |
| A069 | Acceleration stop frequency setting | 0.00 | 0.00 | 0.00 |  |
| A070 | Acceleration stop time frequency setting | 0.0 | 0.0 | 0.0 |  |
| A071 | PID Function Enable | 00 | 00 | 00 |  |
| A072 | PID proportional gain | 1.0 | 1.0 | 1.0 |  |
| A073 | PID integral time constant | 1.0 | 1.0 | 1.0 |  |
| A074 | PID derivative gain | 0.0 | 0.0 | 0.0 |  |
| A075 | PV scale conversion | 1.00 | 1.00 | 1.00 |  |
| A076 | PV source setting | 00 | 00 | 00 |  |
| A077 | Reverse PID action | 00 | 00 | 00 |  |
| A078 | PID output limit | 0.00 | 0.00 | 0.00 |  |
| A079 | PID feed forward select | 00 | 00 | 00 |  |
| A081 | AVR function select | 00 | 00 | 02 |  |
| A082 | AVR voltage select | 230/400 | 230/460 | 200/400 |  |
| A085 | Operation mode selection | 00 | 00 | 00 |  |
| A086 | Energy saving mode tuning | 50.0 | 50.0 | 50.0 |  |
| A092 | Acceleration (2) time setting | 15.0 | 15.0 | 15.0 |  |
| A292 | Acceleration (2) time setting, 2nd motor | 15.0 | 15.0 | 15.0 |  |
| A392 | Acceleration (2) time setting, 3rd motor | 15.0 | 15.0 | 15.0 |  |
| A093 | Deceleration (2) time setting | 15.0 | 15.0 | 15.0 |  |
| A293 | Deceleration (2) time setting, 2nd motor | 15.0 | 15.0 | 15.0 |  |
| A393 | Deceleration (2) time setting, 3rd motor | 15.0 | 15.0 | 15.0 |  |
| A094 | Select method to switch to Acc2/Dec2 profile | 00 | 00 | 00 |  |
| A294 | Select method to switch to Acc2/Dec2, 2nd motor | 00 | 00 | 00 |  |
| A095 | Acc1 to Acc2 frequency transition point | 0.0 | 0.0 | 0.0 |  |
| A295 | Acc1 to Acc2 frequency transition point, 2nd motor | 0.0 | 0.0 | 0.0 |  |
| A096 | Dec1 to Dec2 frequency transition point | 0.0 | 0.0 | 0.0 |  |
| A296 | Dec1 to Dec2 frequency transition point, 2nd motor | 0.0 | 0.0 | 0.0 |  |
| A097 | Acceleration curve selection | 00 | 00 | 00 |  |
| A098 | Deceleration curve setting | 00 | 00 | 00 |  |
| A101 | [OI]-[L] input active range start frequency | 0.00 | 0.00 | 0.00 |  |
| A102 | [OI]-[L] input active range end frequency | 0.00 | 0.00 | 0.00 |  |
| A103 | [OI]-[L] input active range start current | 20. | 20. | 20. |  |
| A104 | [OI]-[L] input active range end current | 100. | 100. | 100. |  |


| "A" Group Parameters |  | Default Setting |  |  | User <br> Setting |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | FU2, FU2 <br> (U.S.A.) | FF2, F2 <br> (Japan) |  |
| A105 | [OI]-[L] input start frequency enable | 01 | 01 | 01 |  |
| A111 | [O2]-[L] input active range start frequency | 0.00 | 0.00 | 0.00 |  |
| A112 | [O2]-[L] input active range end frequency | 0.00 | 0.00 | 0.00 |  |
| A113 | [O2]-[L] input active range start voltage | -100. | -100. | -100. |  |
| A114 | [O2]-[L] input active range end voltage | 100. | 100. | 100. |  |
| A131 | Acceleration curve constants setting | 02 | 02 | 02 |  |
| A132 | Deceleration curve constants setting | 02 | 02 | 02 |  |
| A141 | A input select for calculate function | 02 | 02 | 02 |  |
| A142 | B input select for calculate function | 03 | 03 | 03 |  |
| A143 | Calculation symbol | 00 | 00 | 00 |  |
| A145 | ADD frequency | 0.00 | 0.00 | 0.00 |  |
| A146 | ADD direction select | 00 | 00 | 00 |  |
| A150 | EL-S curve acceleration ratio 1 | 25. | 25. | 25. |  |
| A151 | EL-S curve acceleration ratio 2 | 25. | 25. | 25. |  |
| A152 | EL-S curve acceleration ratio 3 | 25. | 25. | 25. |  |
| A153 | EL-S curve acceleration ratio 4 | 25. | 25. | 25. |  |

## Fine Tuning Functions

| "B" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | FU2, FU2 (U.S.A.) | FF2, F2 <br> (Japan) |  |
| B001 | Selection of restart mode | 00 | 00 | 00 |  |
| B002 | Allowable under-voltage power failure time | 1.0 | 1.0 | 1.0 |  |
| B003 | Retry wait time before motor restart | 1.0 | 1.0 | 1.0 |  |
| B004 | Instantaneous power failure / under-voltage trip alarm enable | 00 | 00 | 00 |  |
| B005 | Number of restarts on power failure / under-voltage trip events | 00 | 00 | 00 |  |
| B006 | Phase loss detection enable | 00 | 00 | 00 |  |
| B007 | Restart frequency threshold | 0.00 | 0.00 | 0.00 |  |
| B008 | Retry after trip select | 00 | 00 | 00 |  |
| B009 | Retry after undervoltage select | 00 | 00 | 00 |  |
| B010 | Retry count select after overvoltage or overcurrent | 3 | 3 | 3 |  |
| B011 | Retry wait time after trip | 1.0 | 1.0 | 1.0 |  |
| B012 | Electronic thermal setting (calculated within the inverter from current output) | Rated current for each inverter |  |  |  |
| B212 | Electronic thermal setting (calculated within the inverter from current output), 2nd motor | Rated current for each inverter |  |  |  |
| B312 | Electronic thermal setting (calculated within the inverter from current output), 3rd motor | Rated current for each inverter |  |  |  |
| B013 | Electronic thermal characteristic | 01 | 01 | 00 |  |
| B213 | Electronic thermal characteristic, 2nd motor | 01 | 01 | 00 |  |
| B313 | Electronic thermal characteristic, 3rd motor | 01 | 01 | 00 |  |
| B015 | Free setting, electronic thermal frequency (1) | 0. | 0. | 0. |  |
| B016 | Free setting, electronic thermal current (1) | 0.0 | 0.0 | 0.0 |  |
| B017 | Free setting, electronic thermal frequency (2) | 0. | 0. | 0. |  |
| B018 | Free setting, electronic thermal current (2) | 0.0 | 0.0 | 0.0 |  |
| B019 | Free setting, electronic thermal frequency (3) | 0. | 0. | 0. |  |
| B020 | Free setting, electronic thermal current (3) | 0.0 | 0.0 | 0.0 |  |
| B021 | Overload restriction operation mode | 01 | 01 | 01 |  |
| B022 | Overload restriction setting | Rated current x 1.50 |  |  |  |
| B023 | Deceleration rate at overload restriction | 1.0 | 1.0 | 1.0 |  |
| B024 | Overload restriction operation mode (2) | 01 | 01 | 01 |  |
| B025 | Overload restriction setting (2) | Rated current x 1.50 |  |  |  |
| B026 | Deceleration rate at overload restriction (2) | 1.00 | 1.00 | 1.00 |  |
| B027 | Overcurrent suppression enable | 01 | 01 | 01 |  |
| B028 | Current limit for active frequency-matching restart | Rated current x 1.0 |  |  |  |


| "B" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| B029 | Scan time constant for active freq. matching | 0.50 | 0.50 | 0.50 |  |
| B030 | Restart freq. select for active freq. matching | 00 | 00 | 00 |  |
| B031 | Software lock mode selection | 01 | 01 | 01 |  |
| B034 | Run/power-on warning time | 0. | 0. | 0. |  |
| B035 | Rotational direction restriction | 00 | 00 | 00 |  |
| B036 | Reduced voltage start selection | 06 | 06 | 06 |  |
| B037 | Function code display restriction | 04 | 04 | 04 |  |
| B038 | Initial display selection | 01 | 01 | 01 |  |
| B039 | Automatic user parameter function enable | 00 | 00 | 00 |  |
| B040 | Torque limit selection | 00 | 00 | 00 |  |
| B041 | Torque limit (1) (forward-driving in 4-quadrant mode) | 150. | 150. | 150. |  |
| B042 | Torque limit (2) (reverse-regenerating in 4-quadrant mode) | 150. | 150. | 150. |  |
| B043 | Torque limit (3) (reverse-driving in 4-quadrant mode) | 150. | 150. | 150. |  |
| B044 | Torque limit (4) (forward-regenerating in 4-quadrant mode) | 150. | 150. | 150. |  |
| B045 | Torque limit LADSTOP enable | 00 | 00 | 00 |  |
| B046 | Reverse Run protection enable | 00 | 00 | 00 |  |
| B050 | Controller deceleration and stop on power loss | 00 | 00 | 00 |  |
| B051 | DC bus voltage trigger level during power loss | 0.0 | 0.0 | 0.0 |  |
| B052 | Over-voltage threshold during power loss | 360.0/720.0 | 360.0/720.0 | 360.0/720.0 |  |
| B053 | Deceleration time setting during power loss | 1.00 | 1.00 | 1.00 |  |
| B054 | Initial output frequency decrease during power loss | 0.00 | 0.00 | 0.00 |  |
| B055 | Proportional gain setting for non-stop operation at power loss | 0.20 | 0.20 | 0.20 |  |
| B056 | Integral time setting for non-stop operation at power loss | . 100 | . 100 | . 100 |  |
| B060 | [O] input max. limit level of window comparator | 100 | 100 | 100 |  |
| B061 | [O] input min. limit level of window comparator | 0 | 0 | 0 |  |
| B062 | [O] input hysteresis width of window comparator | 0 | 0 | 0 |  |
| B063 | [OI] input max. limit level of window comparator | 100 | 100 | 100 |  |
| B064 | [OI] input min. limit level of window comparator | 0 | 0 | 0 |  |
| B065 | [OI] input hysteresis width of window comparator | 0 | 0 | 0 |  |
| B066 | [O2] input maximum limit level of window comparator | 100 | 100 | 100 |  |
| B067 | [O2] input minimum limit level of window comparator | -100 | -100 | -100 |  |


| "B" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| B068 | [O2] input hysteresis width of window comparator | 0 | 0 | 0 |  |
| B070 | [O] input disconnect threshold | 255(no) | 255(no) | 255(no) |  |
| B071 | [OI] input disconnect threshold | 255(no) | 255(no) | 255(no) |  |
| B072 | [O2] input disconnect threshold | 127(no) | 127(no) | 127(no) |  |
| B078 | Clear cumulative input power data | 00 | 00 | 00 |  |
| B079 | Cumulative input power display gain setting | 1 | 1 | 1 |  |
| B082 | Start frequency adjustment | 0.50 | 0.50 | 0.50 |  |
| B083 | Carrier frequency setting | $\begin{aligned} & 3.0 \\ & 2.1 \\ & 1.9 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.1 \\ & 1.9 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.1 \\ & 1.9 \end{aligned}$ |  |
| B084 | Initialization mode (parameters or trip history) | 00 | 00 | 00 |  |
| B085 | Country code for initialization | 01 | 02 | 00 |  |
| B086 | Frequency scaling conversion factor | 1.0 | 1.0 | 1.0 |  |
| B087 | STOP key enable | 00 | 00 | 00 |  |
| B088 | Restart mode after FRS | 00 | 00 | 00 |  |
| B089 | Automatic carrier frequency reduction |  |  |  |  |
| B090 | Dynamic braking usage ratio | 0.0 | 0.0 | 0.0 |  |
| B091 | Stop mode selection | 00 | 00 | 00 |  |
| B092 | Cooling fan control | 00 | 00 | 00 |  |
| B095 | Dynamic braking control | 00 | 00 | 00 |  |
| B096 | Dynamic braking activation level | 360/720 | 360/720 | 360/720 |  |
| B098 | Thermistor for thermal protection control | 00 | 00 | 00 |  |
| B099 | Thermal protection level setting | 3000. | 3000. | 3000. |  |
| B100 | Free-setting V/f frequency (1) | 0. | 0. | 0. |  |
| B101 | Free-setting V/f voltage (1) | 0.0 | 0.0 | 0.0 |  |
| B102 | Free-setting V/f frequency (2) | 0. | 0. | 0. |  |
| B103 | Free-setting V/f voltage (2) | 0.0 | 0.0 | 0.0 |  |
| B104 | Free-setting V/f frequency (3) | 0. | 0 . | 0. |  |
| B105 | Free-setting V/f voltage (3) | 0.0 | 0.0 | 0.0 |  |
| B106 | Free-setting V/f frequency (4) | 0. | 0. | 0. |  |
| B107 | Free-setting V/f voltage (4) | 0.0 | 0.0 | 0.0 |  |
| B108 | Free-setting V/f frequency (5) | 0. | 0. | 0. |  |
| B109 | Free-setting V/f voltage (5) | 0.0 | 0.0 | 0.0 |  |
| B110 | Free-setting V/f frequency (6) | 0. | 0. | 0. |  |
| B111 | Free-setting V/f voltage (6) | 0.0 | 0.0 | 0.0 |  |
| B112 | Free-setting V/f frequency (7) | 0. | 0. | 0. |  |
| B113 | Free-setting V/f voltage (7) | 0.0 | 0.0 | 0.0 |  |


| "B" Group Parameters |  | Default Setting |  |  | User <br> Setting |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | FU2, FU2 <br> (U.S.A.) | FF2, F2 <br> (Japan) |  |
| B120 | Brake Control Enable | 00 | 00 | 00 |  |
| B121 | Brake Wait Time for Release | 0.00 | 0.00 | 0.00 |  |
| B122 | Brake Wait Time for Acceleration | 0.00 | 0.00 | 0.00 |  |
| B123 | Brake Wait Time for Stopping | 0.00 | 0.00 | 0.00 |  |
| B124 | Brake Wait Time for Confirmation | 0.00 | 0.00 | 0.00 |  |
| B125 | Brake Release Frequency Setting | 0.00 | 0.00 | 0.00 |  |
| B126 | Brake Release Current Setting | Rated current for each inverter |  |  |  |
| B127 | Braking frequency | 0.00 | 0.00 | 0.00 |  |
| B130 | Over-voltage LADSTOP enable | 00 | 00 | 00 |  |
| B131 | Over-voltage LADSTOP level | $380 / 760$ | $380 / 760$ | $380 / 760$ |  |
| B132 | Acceleration and deceleration rate at overvoltage <br> suppression | 1.0 | 1.0 | 1.0 |  |
| B133 | Overvoltage suppression proportional gain | 0.50 | 0.50 | 0.50 |  |
| B134 | Overvoltage suppression integral time | 0.060 | 0.060 | 0.060 |  |

## Intelligent

Terminal
Functions

| "C" Group Parameters |  | Default Setting |  |  | User <br> Setting |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | FU2, FU2 <br> (U.S.A.) | FF2, F2 <br> (Japan) |  |
| C001 | Terminal [1] function | 18 | 18 | 18 |  |
| C002 | Terminal [2] function | 16 | 16 | 16 |  |
| C003 | Terminal [3] function | 06 | 06 | 06 |  |
| C004 | Terminal [4] function | 11 | 11 | 11 |  |
| C005 | Terminal [5] function | 09 | 09 | 09 |  |
| C006 | Terminal [6] function | 03 | 13 | 03 |  |
| C007 | Terminal [7] function | 02 | 02 | 02 |  |
| C008 | Terminal [8] function | 01 | 01 | 01 |  |
| C011 | Terminal [1] active state | 00 | 00 | 00 |  |
| C012 | Terminal [2] active state | 00 | 00 | 00 |  |
| C013 | Terminal [3] active state | 00 | 00 | 00 |  |
| C014 | Terminal [4] active state | 00 | 00 | 00 |  |
| C015 | Terminal [5] active state | 00 | 00 | 00 |  |
| C016 | Terminal [6] active state | 00 | 00 | 00 |  |
| C017 | Terminal (7) active state | 00 | 00 | 00 |  |
| C018 | Terminal [8] active state |  |  |  |  |


| "C" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| C019 | Terminal [FW] active state | 00 | 00 | 00 |  |
| C021 | Terminal [11] function | 01 | 01 | 01 |  |
| C022 | Terminal [12] function | 00 | 00 | 00 |  |
| C023 | Terminal [13] function | 03 | 03 | 03 |  |
| C024 | Terminal [14] function | 07 | 07 | 07 |  |
| C025 | Terminal [15] function | 08 | 08 | 08 |  |
| C026 | Alarm relay terminal function | 05 | 05 | 05 |  |
| C027 | [FM] signal selection | 00 | 00 | 00 |  |
| C028 | [AM] signal selection | 00 | 00 | 00 |  |
| C029 | [AMI] signal selection | 00 | 00 | 00 |  |
| C030 | Digital current monitor reference value | Rated current x 1.0 |  |  |  |
| C031 | Terminal [11] active state | 00 | 00 | 00 |  |
| C032 | Terminal [12] active state | 00 | 00 | 00 |  |
| C033 | Terminal [13] active state | 00 | 00 | 00 |  |
| C034 | Terminal [14] active state | 00 | 00 | 00 |  |
| C035 | Terminal [15] active state | 00 | 00 | 00 |  |
| C036 | Alarm relay active state | 01 | 01 | 01 |  |
| C038 | Low current indication output mode select | 01 | 01 | 01 |  |
| C039 | Low current indication detection level | Rated current x 1.0 |  |  |  |
| C040 | Overload signal output mode | 01 | 01 | 01 |  |
| C041 | Overload level setting | Rated current for each inverter |  |  |  |
| C042 | Frequency arrival setting for accel. | 0.00 | 0.00 | 0.00 |  |
| C043 | Arrival frequency setting for decel. | 0.00 | 0.00 | 0.00 |  |
| C044 | PID deviation level setting | 3.0 | 3.0 | 3.0 |  |
| C045 | Frequency arrival setting for acceleration (2) | 0.00 | 0.00 | 0.00 |  |
| C046 | Frequency arrival setting for deceleration (2) | 0.00 | 0.00 | 0.00 |  |
| C052 | Maximum PID feedback (PV) data | 0.00 | 0.00 | 0.00 |  |
| C053 | Minimum PID feedback (PV) data | 100.0 | 100.0 | 100.0 |  |
| C055 | Over-torque (forward-driving) level setting | 100. | 100. | 100. |  |
| C056 | Over-torque (reverse regenerating) level setting | 100. | 100. | 100. |  |
| C057 | Over-torque (reverse driving) level setting | 100. | 100. | 100. |  |
| C058 | Over-torque (forward regenerating) level setting | 100. | 100. | 100. |  |
| C061 | Electronic thermal warning level setting | 80. | 80. | 80. |  |
| C062 | Alarm code output | 00 | 00 | 00 |  |
| C063 | Zero speed detection level | 0.00 | 0.00 | 0.00 |  |
| C064 | Heatsink overheat warning level | 120 | 120 | 120 |  |


| "C" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 (Japan) |  |
| C071 | Communication speed selection | 04 | 04 | 04 |  |
| C072 | Node allocation | 1. | 1. | 1. |  |
| C073 | Communication data length selection | 7 | 7 | 7 |  |
| C074 | Communication parity selection | 00 | 00 | 00 |  |
| C075 | Communication stop bit selection | 1 | 1 | 1 |  |
| C076 | Action upon communication error selection | 02 | 02 | 02 |  |
| C077 | Communication timeout before trip | 0.00 | 0.00 | 0.00 |  |
| C078 | Communication wait time | 0. | 0. | 0. |  |
| C079 | Communication protocol select | 00 | 00 | 00 |  |
| C081 | [O] input span calibration | Factory set | Factory set | Factory set |  |
| C082 | [OI] input span calibration | Factory set | Factory set | Factory set |  |
| C083 | [O2] input span calibration | Factory set | Factory set | Factory set |  |
| C085 | Thermistor input tuning | 105.0 | 105.0 | 105.0 |  |
| C086 | [AM] terminal offset tuning | 0.0 | 0.0 | 0.0 |  |
| C087 | [AMI] terminal meter tuning | 80. | 80. | 80. |  |
| C088 | [AMI] terminal offset tuning | Factory set | Factory set | Factory set |  |
| C091 | Debug mode enable | 00 | 00 | 00 | Do not edit |
| C101 | Up/Down memory mode selection | 00 | 00 | 00 |  |
| C102 | Reset mode selection | 00 | 00 | 00 |  |
| C103 | Restart mode after reset | 00 | 00 | 00 |  |
| C105 | FM gain adjustment | 100. | 100. | 100. |  |
| C106 | AM gain adjustment | 100. | 100. | 100. |  |
| C107 | AMI gain adjustment | 100. | 100. | 100. |  |
| C109 | AM bias adjustment | 0. | 0. | 0. |  |
| C110 | AMI bias adjustment | 20. | 20. | 20. |  |
| C111 | Overload setting (2) | Rated current for each inverter model |  |  |  |
| C121 | [O] input zero calibration | Factory set |  |  |  |
| C122 | [OI] input zero calibration | Factory set |  |  |  |
| C123 | [O2] input zero calibration | Factory set |  |  |  |
| C130 | Terminal [11] ON-delay time | 0.0 | 0.0 | 0.0 |  |
| C131 | Terminal [11] OFF-delay time | 0.0 | 0.0 | 0.0 |  |
| C132 | Terminal [12] ON-delay time | 0.0 | 0.0 | 0.0 |  |
| C133 | Terminal [12] OFF-delay time | 0.0 | 0.0 | 0.0 |  |
| C134 | Terminal [13] ON-delay time | 0.0 | 0.0 | 0.0 |  |
| C135 | Terminal [13] OFF-delay time | 0.0 | 0.0 | 0.0 |  |
| C136 | Terminal [14] ON-delay time | 0.0 | 0.0 | 0.0 |  |


| "C" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| C137 | Terminal [14] OFF-delay time | 0.0 | 0.0 | 0.0 |  |
| C138 | Terminal [15] ON-delay time | 0.0 | 0.0 | 0.0 |  |
| C139 | Terminal [15] OFF-delay time | 0.0 | 0.0 | 0.0 |  |
| C140 | Relay output ON-delay time | 0.0 | 0.0 | 0.0 |  |
| C141 | Relay output OFF-delay time | 0.0 | 0.0 | 0.0 |  |
| C142 | Logic output 1 function A | 00 | 00 | 00 |  |
| C143 | Logic output 1 function B | 00 | 00 | 00 |  |
| C144 | Logic output 1 operator | 00 | 00 | 00 |  |
| C145 | Logic output 2 function A | 00 | 00 | 00 |  |
| C146 | Logic output 2 function B | 00 | 00 | 00 |  |
| C147 | Logic output 2 operator | 00 | 00 | 00 |  |
| C148 | Logic output 3 function A | 00 | 00 | 00 |  |
| C149 | Logic output 3 function B | 00 | 00 | 00 |  |
| C150 | Logic output 3 operator | 00 | 00 | 00 |  |
| C151 | Logic output 4 function A | 00 | 00 | 00 |  |
| C152 | Logic output 4 function B | 00 | 00 | 00 |  |
| C153 | Logic output 4 operator | 00 | 00 | 00 |  |
| C154 | Logic output 5 function A | 00 | 00 | 00 |  |
| C155 | Logic output 5 function B | 00 | 00 | 00 |  |
| C156 | Logic output 5 operator | 00 | 00 | 00 |  |
| C157 | Logic output 6 function A | 00 | 00 | 00 |  |
| C158 | Logic output 6 function B | 00 | 00 | 00 |  |
| C159 | Logic output 6 operator | 00 | 00 | 00 |  |
| C160 | Terminal [1] input response time setting | 1 | 1 | 1 |  |
| C161 | Terminal [2] input response time setting | 1 | 1 | 1 |  |
| C162 | Terminal [3] input response time setting | 1 | 1 | 1 |  |
| C163 | Terminal [4] input response time setting | 1 | 1 | 1 |  |
| C164 | Terminal [5] input response time setting | 1 | 1 | 1 |  |
| C165 | Terminal [6] input response time setting | 1 | 1 | 1 |  |
| C166 | Terminal [7] input response time setting | 1 | 1 | 1 |  |
| C167 | Terminal [8] input response time setting | 1 | 1 | 1 |  |
| C168 | Terminal [FW] input response time setting | 1 | 1 | 1 |  |
| C169 | Multi-speed position determination time | 0 | 0 | 0 |  |

## Motor Constants <br> Functions

| "H" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| H001 | Auto-tuning setting | 00 | 00 | 00 |  |
| H002 | Motor data selection, 1st motor | 00 | 00 | 00 |  |
| H202 | Motor data selection, 2nd motor | 00 | 00 | 00 |  |
| H003 | Motor capacity, 1st motor | Factory set |  |  |  |
| H203 | Motor capacity, 2nd setting | Factory set |  |  |  |
| H004 | Motor poles setting, 1st motor | 4 | 4 | 4 |  |
| H204 | Motor poles setting, 2nd motor | 4 | 4 | 4 |  |
| H005 | Motor speed constant, 1st motor | 1.590 | 1.590 | 1.590 |  |
| H205 | Motor speed constant, 2nd motor | 1.590 | 1.590 | 1.590 |  |
| H006 | Motor stabilization constant, 1st motor | 100. | 100. | 100. |  |
| H206 | Motor stabilization constant, 2nd motor | 100. | 100. | 100. |  |
| H306 | Motor stabilization constant, 3rd motor | 100. | 100. | 100. |  |
| H020 | Motor constant R1, 1st motor | According to inverter rating |  |  |  |
| H220 | Motor constant R1, 2nd motor | According to inverter rating |  |  |  |
| H021 | Motor constant R2, 1st motor | According to inverter rating |  |  |  |
| H221 | Motor constant R2, 2nd motor | According to inverter rating |  |  |  |
| H022 | Motor constant L, 1st motor | According to inverter rating |  |  |  |
| H222 | Motor constant L, 2nd motor | According to inverter rating |  |  |  |
| H023 | Motor constant Io | According to inverter rating |  |  |  |
| H223 | Motor constant Io, 2nd motor | According to inverter rating |  |  |  |
| H024 | Motor Constant J | According to inverter rating |  |  |  |
| H224 | Motor constant J, 2nd motor | According to inverter rating |  |  |  |
| H030 | Auto constant R1, 1st motor | According to inverter rating |  |  |  |
| H230 | Auto constant R1, 2nd motor | According to inverter rating |  |  |  |
| H031 | Auto constant R2, 1st motor | According to inverter rating |  |  |  |
| H231 | Auto constant R2, 2nd motor | According to inverter rating |  |  |  |
| H032 | Auto constant L, 1st motor | According to inverter rating |  |  |  |
| H232 | Auto constant L, 2nd motor | According to inverter rating |  |  |  |
| H033 | Auto constant Io, 1st motor | According to inverter rating |  |  |  |
| H233 | Auto constant Io, 2nd motor | According to inverter rating |  |  |  |
| H034 | Auto constant J, 1st motor | According to inverter rating |  |  |  |
| H234 | Auto constant J, 2nd motor | According to inverter rating |  |  |  |
| H050 | PI proportional gain for 1st motor | 100.0 | 100.0 | 100.0 |  |
| H250 | PI proportional gain for 2nd motor | 100.0 | 100.0 | 100.0 |  |


| "H" Group Parameters |  | Default Setting |  |  | User <br> Setting |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | FU2, FU2 <br> (U.S.A.) | FF2, F2 <br> (Japan) |  |
| H051 | PI integral gain for 1st motor | 100.0 | 100.0 | 100.0 |  |
| H251 | PI integral gain for 2nd motor | 100.0 | 100.0 | 100.0 |  |
| H052 | P proportional gain setting for 1st motor | 1.00 | 1.00 | 1.00 |  |
| H252 | P proportional gain setting for 2nd motor | 1.00 | 1.00 | 1.00 |  |
| H060 | Zero LV limit for 1st motor | 100. | 100. | 100. |  |
| H260 | Zero LV limit for 2nd motor | 100. | 100. | 100. |  |
| H061 | Zero LV starting boost current for 1st motor | 50. | 50. | 50. |  |
| H261 | Zero LV starting boost current for 2nd motor | 50. | 50. | 50. |  |
| H070 | Terminal selection PI proportional gain setting | 100.0 | 100.0 | 100.0 |  |
| H071 | Terminal selection PI integral gain setting | 100.0 | 100.0 | 100.0 |  |
| H072 | Terminal selection P proportional gain setting | 1.00 | 1.00 | 1.00 |  |
| H073 | Gain switching time | 100. | 100. | 100. |  |

## Expansion Card <br> Functions

| "P" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| P001 | Operation mode on expansion card 1 error | 00 | 00 | 00 |  |
| P002 | Operation mode on expansion card 2 error | 00 | 00 | 00 |  |
| P011 | Encoder pulse-per-revolution (PPR) setting | 1024 | 1024 | 1024 |  |
| P012 | Control pulse setting | 00 | 00 | 00 |  |
| P013 | Pulse line mode setting | 00 | 00 | 00 |  |
| P014 | Home search stop position setting | 0. | 0. | 0. |  |
| P015 | Home search speed setting | 5.00 | 5.00 | 5.00 |  |
| P016 | Home search direction setting | 00 | 00 | 00 |  |
| P017 | Home search completion range setting | 5 | 5 | 5 |  |
| P018 | Home search completion delay time setting | 0.00 | 0.00 | 0.00 |  |
| P019 | Electronic gear set position selection | 00 | 00 | 00 |  |
| P020 | Electronic gear ratio numerator setting | 1. | 1. | 1. |  |
| P021 | Electronic gear ratio denominator setting | 1. | 1. | 1. |  |
| P022 | Feed-forward gain setting | 0.00 | 0.00 | 0.00 |  |
| P023 | Position loop gain setting | 0.50 | 0.50 | 0.50 |  |
| P024 | Position bias setting | 0. | 0. | 0. |  |
| P025 | Temperature compensation thermistor enable | 00 | 00 | 00 |  |
| P026 | Over-speed error detection level setting | 135.0 | 135.0 | 135.0 |  |
| P027 | Speed deviation error detection level setting | 7.50 | 7.50 | 7.50 |  |
| P028 | Numerator of motor gear ratio | 1. | 1. | 1. |  |
| P029 | Denominator of motor gear ratio | 1. | 1. | 1. |  |
| P031 | Accel/decel time input selection | 00 | 00 | 00 |  |
| P032 | Positioning command input selection | 00 | 00 | 00 |  |
| P033 | Torque command input selection | 00 | 00 | 00 |  |
| P034 | Torque command setting | 0. | 0. | 0. |  |
| P035 | Torque command polarity select | 00 | 00 | 00 |  |
| P036 | Torque bias mode | 00 | 00 | 00 |  |
| P037 | Torque bias value | 0. | 0. | 0. |  |
| P038 | Torque bias polarity selection | 00 | 00 | 00 |  |
| P039 | Forward maximum speed for torque-controlled operation | 0.00 | 0.00 | 0.00 |  |
| P040 | Reverse maximum speed for torque-controlled operation | 0.00 | 0.00 | 0.00 |  |
| P044 | DeviceNet comm watchdog timer | 01 | 01 | 01 |  |


| "P" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| P045 | Inverter action on DeviceNet comm error | 21 | 21 | 21 |  |
| P046 | DeviceNet polled I/O: Output instance number | 71 | 71 | 71 |  |
| P047 | DeviceNet polled I/O: Input instance number | 01 | 01 | 01 |  |
| P048 | Inverter action on DeviceNet idle mode | 0 | 0 | 0 |  |
| P049 | Motor poles setting for RPM | 01 | 01 | 01 |  |
| P055 | Pulse train frequency span | 25.0 | 25.0 | 25.0 |  |
| P056 | Pulse train frequency time constant | 0.10 | 0.10 | 0.10 |  |
| P057 | Pulse train frequency bias | 0. | 0. | 0. |  |
| P058 | Pulse train frequency limit | 100. | 100. | 100. |  |
| P060 | Multi-stage position setting 0 | 0 | 0 | 0 |  |
| P061 | Multi-stage position setting 1 | 0 | 0 | 0 |  |
| P062 | Multi-stage position setting 2 | 0 | 0 | 0 |  |
| P063 | Multi-stage position setting 3 | 0 | 0 | 0 |  |
| P064 | Multi-stage position setting 4 | 0 | 0 | 0 |  |
| P065 | Multi-stage position setting 5 | 0 | 0 | 0 |  |
| P066 | Multi-stage position setting 6 | 0 | 0 | 0 |  |
| P067 | Multi-stage position setting 7 | 0 | 0 | 0 |  |
| P068 | Home position mode selection | 00 | 00 | 00 |  |
| P069 | Home position direction selection | 00 | 00 | 00 |  |
| P070 | Low speed homing frequency | 0.00 | 0.00 | 0.00 |  |
| P071 | High speed homing frequency | 0.00 | 0.00 | 0.00 |  |
| P072 | Forward position range setting | 268435455 | 268435455 | 268435455 |  |
| P073 | Reverse position range setting | $268435455$ | $268435455$ | $268435455$ |  |
| P074 | Position teaching selection | 00 | 00 | 00 |  |
| P100 | Easy sequence parameter (U00) | 0. | 0. | 0. |  |
| P101 | Easy sequence parameter (U01) | 0. | 0. | 0. |  |
| P102 | Easy sequence parameter (U02) | 0. | 0. | 0. |  |
| P103 | Easy sequence parameter (U03) | 0. | 0. | 0. |  |
| P104 | Easy sequence parameter (U04) | 0. | 0. | 0. |  |
| P105 | Easy sequence parameter (U05) | 0. | 0. | 0. |  |
| P106 | Easy sequence parameter (U06) | 0. | 0. | 0. |  |
| P107 | Easy sequence parameter (U07) | 0. | 0. | 0. |  |
| P108 | Easy sequence parameter (U08) | 0. | 0. | 0. |  |
| P109 | Easy sequence parameter (U09) | 0. | 0. | 0. |  |
| P110 | Easy sequence parameter (U10) | 0. | 0. | 0. |  |
| P111 | Easy sequence parameter (U11) | 0. | 0 . | 0. |  |


| "P" Group Parameters |  | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 <br> (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| P112 | Easy sequence parameter (U12) | 0. | 0. | 0. |  |
| P113 | Easy sequence parameter (U13) | 0. | 0. | 0. |  |
| P114 | Easy sequence parameter (U14) | 0. | 0. | 0. |  |
| P115 | Easy sequence parameter (U15) | 0. | 0. | 0. |  |
| P116 | Easy sequence parameter (U16) | 0. | 0. | 0. |  |
| P117 | Easy sequence parameter (U17) | 0. | 0. | 0. |  |
| P118 | Easy sequence parameter (U18) | 0. | 0. | 0. |  |
| P119 | Easy sequence parameter (U19) | 0. | 0. | 0. |  |
| P120 | Easy sequence parameter (U20) | 0. | 0. | 0. |  |
| P121 | Easy sequence parameter (U21) | 0. | 0. | 0. |  |
| P122 | Easy sequence parameter (U22) | 0. | 0. | 0. |  |
| P123 | Easy sequence parameter (U23) | 0. | 0. | 0. |  |
| P124 | Easy sequence parameter (U24) | 0. | 0. | 0. |  |
| P125 | Easy sequence parameter (U25) | 0. | 0. | 0. |  |
| P126 | Easy sequence parameter (U26) | 0. | 0. | 0. |  |
| P127 | Easy sequence parameter (U27) | 0. | 0. | 0. |  |
| P128 | Easy sequence parameter (U28) | 0. | 0. | 0. |  |
| P129 | Easy sequence parameter (U29) | 0. | 0. | 0. |  |
| P130 | Easy sequence parameter (U30) | 0. | 0. | 0. |  |
| P131 | Easy sequence parameter (U31) | 0. | 0. | 0. |  |

## User-selectable <br> Menu Functions

|  | 'P'P'Group Parameters | Default Setting |  |  | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Func. <br> Code | Name | FEF2, FE2 (Europe) | $\begin{gathered} \text { FU2, FU2 } \\ \text { (U.S.A.) } \end{gathered}$ | FF2, F2 <br> (Japan) |  |
| U001 | User-selected function... "no" = disabled, or use any of the functions D001 to P049 | no | no | no |  |
| U002 |  | no | no | no |  |
| U003 |  | no | no | no |  |
| U004 |  | no | no | no |  |
| U005 |  | no | no | no |  |
| U006 |  | no | no | no |  |
| U007 |  | no | no | no |  |
| U008 |  | no | no | no |  |
| U009 |  | no | no | no |  |
| U010 |  | no | no | no |  |
| U011 |  | no | no | no |  |
| U012 |  | no | no | no |  |



# CE-EMC Installation Guidelines 



In This Appendix....
page
— CE-EMC Installation Guidelines...................................................... 2

- Precautions for EMC, Models SJ700-004 to -1500 .......................... 4
- Precautions for EMC, Models SJ700-1850 to -4000 ........................ 5


## CE-EMC Installation Guidelines

You are required to satisfy the EMC directive (89/336/EEC) when using an SJ7002 inverter in an EU country. To satisfy the EMC directive and to comply with standard, follow the guidelines in this section.

1. As user you must ensure that the HF (high frequency) impedance between adjustable frequency inverter, filter, and ground is as small as possible.

- Ensure that the connections are metallic and have the largest possible contact areas (zincplated mounting plates).

2. Avoid conductor loops that act like antennas, especially loops that encompass large areas.

- Avoid unnecessary conductor loops.
- Avoid parallel arrangement of low-level signal wiring and power-carrying or noise-prone conductors.


## 3. Use shielded wiring for the motor cable and all analog and digital control lines.

- Allow the effective shield area of these lines to remain as large as possible; i.e., do not strip away the shield (screen) further away from the cable end than absolutely necessary.
- With integrated systems (for example, when the adjustable frequency inverter is communicating with some type of supervisory controller or host computer in the same control cabinet and they are connected at the same PE-potential), connect the shields of the control lines to ground +PE (protective earth) at both ends. With distributed systems (for example the communicating supervisory controller or host computer is not in the same control cabinet and there is a distance between the systems), we recommend connecting the shield of the control lines only at the end connecting to the adjustable frequency inverter. If possible, route the other end of the control lines directly to the cable entry section of the supervisory controller or host computer. The shield conductor of the motor cables always must connected to PE at both ends.
- To achieve a large area contact between shield and PE-potential, use a PG screw with a metallic shell, or use a metallic mounting clip.
- Use only cable with braided, tinned copper mesh shield (type "CY") with $85 \%$ coverage.
- The shielding continuity should not be broken at any point in the cable. If the use of reactors, contactors, terminals, or safety switches in the motor output is necessary, the unshielded section should be kept as short as possible.
- Some motors have a rubber gasket between terminal box and motor housing. Very often, the terminal boxes, and particularly the threads for the metal PG screw connections, are painted. Make sure there is always a good metallic connection between the shielding of the motor cable, the metal PG screw connection, the terminal box, and the motor housing. If necessary, carefully remove paint between conducting surfaces.

4. Take measures to minimize interference that is frequently coupled in through installation cables.

- Separate interfering cables with 0.25 m minimum from cables susceptible to interference. A particularly critical point is laying parallel cables over longer distances. If two cables intersect (one crosses over the other), the interference is smallest if they intersect at an angle of $90^{\circ}$. Cables susceptible to interference should therefore only intersect motor cables, intermediate circuit cables, or the wiring of a rheostat at right angles and never be laid parallel to them over longer distances.

5. Minimize the distance between an interference source and an interference sink (inter-ference-threatened device), thereby decreasing the effect of the emitted interference on the interference sink.

- You should use only interference-free devices and maintain a minimum distance of 0.25 m from the adjustable frequency inverter.


## 6. Follow safety measures in the filter installation.

- Ensure that the protective earth terminal (PE) of the filter is properly connected to the PE terminal of the adjustable frequency inverter. An HF ground connection via metal contact between the housings of the filter and the adjustable frequency inverter, or solely via cable shield, is not permitted as a protective conductor connection. The filter must be solidly and permanently connected with the ground potential so as to preclude the danger of electric shock upon touching the filter if a fault occurs.

To achieve a protective ground connection for the filter:

- Ground the filter with a conductor of at least $10 \mathrm{~mm}^{2}$ cross-sectional area.
- Connect a second grounding conductor, using a separate grounding terminal parallel to the protective conductor. (The cross section of each single protective conductor terminal must be sized for the required nominal load.)

SJ7002 inverter with book-type filter


## Precautions for EMC, Models SJ700-004 to -1500

The SJ7002 series inverter conforms to the requirements of Electromagnetic Compatibility (EMC) Directive (2004/108/EC). However, when using the inverter in Europe, you must comply with the following specifications and requirements to meet the EMC Directive and other standards in Europe:

WARNING: This equipment must be installed, adjusted, and maintained by qualified engineers who have expert knowledge of electric work, inverter operation, and the hazardous circumstances that can occur. Otherwise, personal injury may result.

Use the following checklist to ensure the inverter is within proper operating ranges and conditions.

1. Power supply requirements
a. Voltage fluctuation must be $-15 \%$ to $+10 \%$ or less.
b. Voltage imbalance must be $\pm 3 \%$ or less.
c. Frequency variation must be $\pm 4 \%$ or less
d. Total harmonic distortion (THD) of voltage must be $\pm 10 \%$ or less.
2. Installation requirement
a. A special filter intended for the SJ7002 series inverter must be installed.
3. Wiring requirements
a. A shielded wire (screened cable)must be used for motor wiring, and the length must be according to the following table below.
b. The carrier frequency must be set according to the following table to meet an EMC requirement.
c. The main circuit wiring must be separated from the control circuit wiring.
4. Environmental requirements (to be met when a filter is used)
a. Ambient temperature must be within the range $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
b. Relative humidity must be within the range $20 \%$ to $90 \%$ (non-condensing).
c. Vibrations must be
$5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6 \mathrm{G})(10$ to 55 Hz$)$ or less $(0.4$ to 22 kW$)$.
$2.94 \mathrm{~m} / \mathrm{sec}^{2}(0.3 \mathrm{G})(10$ to 55 Hz$)$ or less ( 30 to 150 kW ).
d. The inverter must be installed indoors (not exposed to corrosive gases and dust) at an altitude of $1,000 \mathrm{~m}$ or less.

| Models | Cat. | Cable length (m) | Carrier freq. <br> (kHz) | Models | Cat. | Cable <br> length <br> (m) | Carrier freq. (kHz) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ700-004L | C3 | 5 | 2.5 | - | - | - | - |
| SJ700-007L | C3 | 5 | 2.5 | SJ700-007H | C3 | 5 | 2.5 |
| SJ700-015L | C3 | 5 | 2.5 | SJ700-015H | C3 | 5 | 2.5 |
| SJ700-022L | C3 | 5 | 2.5 | SJ700-022H | C3 | 5 | 2.5 |
| SJ700-037L | C3 | 5 | 2.5 | SJ700-040H | C3 | 5 | 2.5 |
| SJ700-055L | C3 | 1 | 1 | SJ700-055H | C3 | 1 | 2.5 |
| SJ700-075L | C3 | 1 | 1 | SJ700-075H | C3 | 1 | 2.5 |
| SJ700-110L | C3 | 1 | 1 | SJ700-110H | C3 | 1 | 2.5 |
| SJ700-150L | C3 | 1 | 1 | SJ700-150H | C3 | 1 | 2.5 |
| SJ700-185L | C3 | 1 | 1 | SJ700-185H | C3 | 1 | 2.5 |
| SJ700-220L | C3 | 5 | 2.5 | SJ700-220H | C3 | 1 | 2.5 |


| Models | Cat. | Cable length (m) | Carrier freq. (kHz) | Models | Cat. | Cable length (m) | Carrier freq. (kHz) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SJ700-300L | C3 | 5 | 2.5 | SJ700-300H | C3 | 1 | 2.5 |
| SJ700-370L | C3 | 5 | 2.5 | SJ700-370H | C3 | 1 | 2.5 |
| SJ700-450L | C3 | 5 | 2.5 | SJ700-450H | C3 | 5 | 2.5 |
| SJ700-550L | C3 | 5 | 2.5 | SJ700-550H | C3 | 5 | 2.5 |
|  |  |  |  | SJ700-750H | C3 | 10 | 2.5 |
|  |  |  |  | SJ700-900H | C3 | 10 | 2.5 |
|  |  |  |  | SJ700-1100H | C3 | 10 | 2.5 |
|  |  |  |  | $\begin{array}{\|l} \hline \text { SJ700-1320H } \\ \text { SJ700-1500H } \end{array}$ | C3 | 10 | 2.5 |

## Precautions for EMC, Models SJ700-1850 to -4000

The SJ7002 series inverter conforms to the requirements of Electromagnetic Compatibility (EMC) Directive (2004/108/EC). However, when using the inverter in Europe, you must comply with the following specifications and requirements to meet the EMC Directive and other standards in Europe:


WARNING: This equipment must be installed, adjusted, and maintained by qualified engineers who have expert knowledge of electric work, inverter operation, and the hazardous circumstances that can occur. Otherwise, personal injury may result.

Use the following checklist to ensure the inverter is within proper operating ranges and conditions.

1. Power supply requirements
a. Voltage fluctuation must be $-15 \%$ to $+10 \%$ or less.
b. Voltage imbalance must be $\pm 3 \%$ or less.
c. Frequency variation must be $\pm 4 \%$ or less.
d. Total harmonic distortion (THD) of voltage must be $\pm 10 \%$ or less.
2. Installation requirements
a. A special filter and a ferrite core intended for the SJ 7002 large capacity series inverter must be installed, shown in the table below.
b. A provided direct reactor with the SJ700 large capacity series inverter must be installed.


| Models | Category C2 |  |  | Category C3 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Filter | Ferrite <br> Core 1 | Ferrite <br> Core 2 | Filter | Ferrite <br> Core 1 | Ferrite <br> Core 2 |
| SJ700-1850HFU2/HFE2 | $\boldsymbol{v}$ | $\boldsymbol{\nu}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ |
| SJ700-3150HFU2/HFE2 | $\boldsymbol{\nu}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ |
| SJ700-4000HFU2/HFE2 | $\boldsymbol{\nu}$ | $\boldsymbol{\nu}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ | $\boldsymbol{x}$ |

$\boldsymbol{\nu}=$ Installation
$\boldsymbol{x}=$ No installation
3. Wiring requirements
a. Shielded wire (screened cable) is required for motor wiring but is not required for direct reactor wiring. And, the length of the cable must be according to the following table.
b. The carrier frequency setting must be less than 3 kHz (derated is required) to meet an EMC requirement.
c. The main circuit wiring must be separated from the control circuit wiring.
4. Environmental requirements (to be met when a filter is used)
a. Ambient temperature must be within the range $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
b. Relative humidity must be within the range $20 \%$ to $90 \%$ (non-condensing).
c. Vibrations must be $1.96 \mathrm{~m} / \mathrm{sec}^{2}(0.2 \mathrm{G})(10 \mathrm{to} 55 \mathrm{~Hz})$ or less.
d. The inverter must be installed indoors (not exposed to corrosive gas and dust) at an altitude of $1,000 \mathrm{~m}$ or less.

| Models | Cable length (m) |  |
| :--- | :---: | :---: |
|  | to motor | to DC reactor |
| SJ700-1850HFU2/HFE2 | 5 | 5 |
| SJ700-3150HFU2/HFE2 | 10 | 5 |
| SJ700-4000HFU2/HFE2 | 10 | 5 |

## Index



## A

A Group functions 3-10
Absolute Position Control Mode 3-72
AC reactors 5-3
Acceleration 1-16, 3-9
characteristic curves 3-26
second function 3-24
two-stage 4-20
Acceleration stop function 3-21
Access levels 3-5, 3-38, 4-23
Access to terminals 2-2
Accessories 5-2
Adaptive auto-tuning 4-73
ADD frequency enable 4-34
Alarm signal 4-47
Algorithms 3-66
Algorithms, torque control 3-5
Ambient temperature 2-8, $\underline{\text { A-2 }}$
Analog disconnect detection 4-55
Analog input settings 3-11, 3-27
Analog inputs
current/voltage select 4-24
operation 4-63
sampling filter 4-63
wiring examples 4-65
Analog outputs
FM type 4-67
operation 4-66
PWM type 4-66
Analog signal calibration 3-62
Anti-windmilling 3-18, 3-21
Arrival frequency $\mathrm{A}-2$
ASCII code table B-19
ASCII mode communications B-5
Automatic restart 3-30
Automatic voltage regulation 3-23
Auto-tuning 4-71, $\mathbf{A - 2}$
adaptive 4-73
procedure 4-72
Auto-tuning constants 3-66
AVR 3-23

## B

B Group functions 3-30
Base frequency 2-32, A-2
Bibliography A-6
Block check code B-19
Brake control, external 3-48, 4-32, 4-54
Braking 1-16 dynamic 5-6
Braking resistor $\underline{2-5}$, $\underline{\underline{-2}}$
Braking resistor selection 5-7
Braking unit 2-5
Braking, dynamic 1-19
Break-away torque $\underline{\underline{A}-2}$

## C

C Group functions 3-50
Capacitor life curve 6-20
Capacitor life warning 4-58
Capacitor replacement 6-21
Carrier frequency 3-44, A-2
Catching a spinning motor 3-45, 3-62
CE approval A-2
CE-EMC guidelines D-2
Chassis ground connection 2-26
Choke 2-5, $\underline{A-2}$
Choke, DC link 5-4
Chopper frequency 3-44
Circuit breaker sizes XV
Clear cumulative power value 4-36
Clearance 2-8
Coasting 3-45, 3-62
Commercial power source enable 4-22
Communication test mode B-20
Communications 3-61
Communications protocol, ASCII B-5
Communications protocol, ModBus B-21
Communications, serial B-2
Constant torque 3-15
Constant volts/hertz operation 1-14

Control algorithms 3-14
Control gain switching 4-26
Controlled deceleration 3-42
Controlled deceleration at power loss 4-4
Cooling fan control 3-47
Copy Unit 1-3
Current forcing 4-37
Current overload 3-36
Current overload restriction 4-29

## D

D Group parameters 3-6
DC braking 4-18, 4-19, $\underline{\underline{A}-2}$
derating 3-20
settings 3-18
DC link A-2
choke 5-4
Deadband A-2
Deceleration 1-16, 3-9, 4-18
characteristic curves 3-26
second function 3-24
two-stage 4-20
Default parameter values $\underline{\mathrm{C}-2}$
Default settings
restoring 6-16
Derating
DC braking $3-20$
Derivative gain 3-22
DeviceNet 5-5
Digital operator 2-29, 3-3
force operation 4-28
removal 2-4
Digital operator panel A-2
Digital operators 1-3
Dimensions
inverter 2-9
terminals $2-20$
Diode A-3
Display restriction 3-39
Droop control 4-27
Duty cycle A-3
Dynamic braking 5-6, $\underline{\text { A-3 }}$
usage ratio $\underline{3-47, ~ 5-6}$

## E

Easy sequence 4-38
Editing parameters 2-29, 2-32
in Run Mode 3-5, 3-38, 4-23
Electromagnetic compatibility D-2
Electronic thermal overload 3-32
Elevator braking 3-48
EMC installation guidelines D-2
EMC installation precautions D-4
Emergency Stop function 2-37
EMI A-3
EMI filter 5-4
Encoder feedback 3-17
Energy savings mode 3-23

Error
PID loop 4-46, A-3
Error codes
programming 3-75
trip events 6-6
Event clearing 4-24
Expansion bay 2-4
Expansion card functions 3-69
Expansion cards
digital input 5-5
encoder feedback 5-5
input signals 4-34
output signals 4-54
External brake control 4-32, 4-54
External trip 4-21

## F

F Group functions 3-9
Factory settings, restoring 6-16
Fan default setting 3-47
Fan outlet 2-8, 2-26
Fan replacement 6-23
Fan unit, Filler plate $1-4$
FAQ 1-18
Features 1-2, 2-2
Ferrite core 5-4
Filters
noise suppression 5-2
Fine-tuning functions 3-30
Force operation from digital operator 4-28
Force terminal mode 4-35
Forward run command 4-15
Forward/reverse drive stop 4-41
Forward/reverse rotation signals 4-61
Four-quadrant operation A-3
Free-run stop 3-45, 3-62, 4-18, 4-20, $\underline{\text { A-3 }}$
Frequency arrival signals 4-44
Frequency matching 3-45, 3-62
Frequency setting A-3
Frequency-related functions $\underline{3-20}$
Frequently asked questions $1-18$
Functions 1-16
Fuse ratings 2-18
Fuse sizes XV
Fuzzy logic accel/decel 3-23

## G

Gain settings 4-26
General output signals 4-60
General purpose inputs 4-38
Glossary of terms $\underline{\text { A-2 }}$
Grommets 2-17

## H

H Group parameters 3-66
Harmonics A-3
Heatsink overheat warning 4-59
History of trip events $\underline{3-8}$
Home search A-4
Horsepower A-3

IGBT $\underline{1-14, ~} \underline{A-3}$
test method 6-27
Index of terminal functions 4-11
Inertia A-3
Initialization 6-16
Input active range 3-27
Input circuits 4-13
Input terminals 2-22
Inspection
electrical measurements 6-25
IGBT test method 6-27
measurement techniques 6-26
procedures 6-17
unpacking $\underline{2-2}$
Installation 2-6
Instantaneous power failure 4-48
Insulation test 6-19
Integral gain 3-22
Intelligent input terminals 3-50, 4-13
Intelligent input wiring examples 4-13
Intelligent output terminals 3-55, 4-43
Intelligent terminal functions 3-50
Intelligent terminal index 4-11
Intelligent terminals A-3
Inverter 1-18
Inverter definition A-3
Inverter ready signal 4-61
Inverter specifications 1-6
Isolation transformer A-4

Jog command 4-18
Jog frequency settings 3-13
Jogging operation A-4
Jump frequency $3-21, \underline{A-4}$

## K

Keypad
features $2-29, \underline{3-3}$
navigation 2-31, 3-4
navigation, trip events 6-15
Keypad features 2-29
Keypads 1-3, 3-2

LEDs 2-29, 3-3
Line reactor $\underline{\text { A-4 }}$
Linear accel/decel 3-26
Logic connector 4-9
Logic output signals 4-58
Logic terminals 3-50, 3-55
input wiring examples 4-13
Low cooling fan speed 4-59
Low output current signal 4-60

## M

Main profile parameters $\underline{\underline{3-9}}$
Maintenance procedures 6-17
Major failure signal 4-61
Megger test 6-19
ModBus mode communications B-21
Model number convention 1-5
Momentum A-4
Monitor mode 2-31, 2-35, 2-36, 3-4
Monitoring functions 3-6
Motor constants 3-66, 4-69
auto-tuning 4-71
manual setting of 4-74
Motor load A-4
Motor poles 2-34
Motor selection 1-19
Motor wiring 2-26
Mounting location 2-6
Multiple motors
configuration 4-76
Multi-speed operation 4-15, 4-17, $\underline{\text { A-4 }}$
Multi-speed profiles 1-16
Multi-speed settings 3-13
Multi-stage position select 4-39
N
Nameplate 1-5
Navigational map 2-31, 3-4
trip events 6-15
NEC A-4
NEMA A-4
NEMA compliance $\underline{2-17}$
NEMA rating $\underline{2-8}$
Network detection signal 4-57
Noise filters 5-2
AC reactor 2-5
Noise suppression 1-19

## 0

Open-collector outputs 4-43, $\underline{\text { A-4 }}$
Operational modes 3-5
Operator interfaces 1-3
Optimal accel/decel 3-23
Optional components $2-5$
Options 1-2
Orientation A-4
Output circuits 4-43
Output deviation for PID control 4-46
Output frequency 3-9
Output overload 3-36
Output terminals $\underline{2-26}$
Over-current trip 3-30
Overload advance notice signal 4-46
Overload restriction 3-36, 4-29
Over-torque signal 4-48

## P

P Group functions 3-69
P/PI selection 4-26
Parameter editing 2-29, 2-32
Parameter settings tables $\underline{\mathrm{C}-2}$
Parameters $1-16$
Phase loss 3-30
PID feedback second stage output 4-56
PID loop 1-19, A-4
Clear integrator 4-26
Disable 4-26
error A-3
operation 4-75
output deviation 4-46
process variable $\underline{A-4}$
setpoint $\mathrm{A}-5$
settings 3-22
PLC, connecting to 4-7
Poles 1-19
Poles of motor 2-34
Potentiometer 2-33, 4-65
Power factor $\underline{\text { A-4 }}$
Power failure 4-48
Power failure response 3-30
Power loss 4-4
Power loss response 3-42
Power source switching 4-22
Power-on time over signal 4-51
Powerup test 2-27
observations 2-36
Powerup, unattended start 4-21
Process variable A-4
Program mode 2-31, 2-36, 3-4
Programming device $\underline{3-2}$
Programming error codes 3-75
Programming error monitoring 3-8
Proportional gain 3-22
Pulse counter signals 4-42
Pulse-width modulation 4-66
PWM A-4

## R

Ratings label $1-5$
Reactance $\mathrm{A}-5$
Read/write copy unit 1-3, 3-2
Rectifier A-5
Reduced torque 3-15
Regenerative braking A-5
Regulation A-5
Regulatory agency approvals $1-5$
Relay alarm contacts 4-47
Remote control 4-28
Removable components 1-4
Reset function 4-24
Reset Mode 3-62
Restart Mode 3-45, 3-62
Retention screws 2-4
Reverse run command 4-15
Reverse torque A-5
Reverse U-shape accel/decel 3-26
Rotor A-5
Run command 4-15
Run mode 2-36, 3-5
Run signal 4-44
Running the motor 2-35
Run-time edits 3-5, 3-38, 4-23
Run-time signal 4-51

## S

Safety messages i
Saturation voltage $\mathrm{A}-5$
Second motor 4-19
Second stage output, PID 4-56
Sensorless vector control 3-14, 3-16, A-5
Serial communications 3-61, B-2
Set 2nd/3rd motors 4-19
Setpoint A-5
Sigmoid accel/decel 3-26
Single-phase power A-5
Sinking I/O 4-7
Slip A-5
Software lock 3-5, 3-38, 4-23
Sourcing I/O 4-7
Spare parts 6-20
Specifications
general $1-10$
logic signals 4-9
Speed control 1-14, 1-16, 4-15, 4-17
Speed loop gains 4-26
Speed pot 2-33
Speed servo ON 4-37
Speed/position control select 4-41
Squirrel cage A-5
Standard functions 3-10
Start frequency $\underline{\text { A-5 }}$
Starting contact signal 4-59
Stator A-5

## U

U Group functions 3-74
UL instructions xii
Unattended start protection 4-21
Under-voltage signal 4-48
Under-voltage trip 3-30
Unpacking 2-2
Up/Down functions 4-28
User-selectable menu functions 3-74
U-shape accel/decel 3-26

V/f control 3-14
V/f control setting 3-47
V/f free-setting 3-16
Variable torque 3-15
Variable-frequency drives
introduction 1-14
Velocity profile 1-16
Ventilation 2-8, 2-26

## W

Warnings operating procedures 4-3
Warranty 6-29
Watt loss A-6
Windmilling 3-18, 3-21
Window comparator signals 4-62
Wiring
analog inputs 4-65
gauge 2-18
intelligent input wiring examples 4-13
logic 2-26
logic connector 4-9
output 2-26
power input $2-22$
preparation $\underline{2-17}$
serial communications B-3
system diagram 4-8

## z

Zero-phase reactor 5-4
Zero-return functions 4-40


[^0]:    * See notes for wiring tables on the following page.

