

Medium Voltage Products
VD4
Medium voltage vacuum circuit-breaker
12 kV - 1250... $4000 \mathrm{~A}-63 \mathrm{kA}$
36/40.5 kV - 630... $3150 \mathrm{~A}-16 \ldots 40 \mathrm{kA}$

General	6
Quenching principle of ABB interrupters	8
Versions available	8
Fields of application	8
Standards and approvals	8
Service safety	9
Accessories	12
Operating mechanism	12
Technical documentation	14
Quality System	14
Test laboratory	14
Environmental Management System	14
Health and Safety Management System	14

DESCRIPTION

General

The VD4 are a synthesis of the renowned technology in designing and constructing vacuum interrupters embedded in resin poles, and of excellency in design, engineering and production of medium voltage circuit-breakers.
Embedding the interrupter in resin makes the circuit-breaker poles particularly sturdy and protects the interrupter against shocks, accumulation of dust and humidity.
The vacuum interrupter houses the contacts and makes up the interrupting chamber.

Current interruption in vacuum

The vacuum circuit-breaker does not require an interrupting and insulating medium. In fact, the interrupters do not contain ionisable material. In any case, on separation of the contacts an electric arc is generated made up exclusively of melted and vaporised contact material.

The electric arc remains supported by the external energy until the current is cancelled in the vicinity of natural zero. At that instant, the rapid reduction in the load density carried and the rapid condensation of the metallic vapour, leads to extremely rapid recovery of the dielectric characteristics. The vacuum interrupter therefore recovers the insulating capacity and the capacity to withstand the transient recovery voltage, definitively extinguishing the arc.
Since high dielectric strength can be reached in the vacuum, even with minimum distances, interruption of the circuit is also guaranteed when separation of the contacts takes place a few milliseconds before passage of the current through natural zero.

The special geometry of the contacts and the material used, as well as the limited duration and low voltage of the arc, guarantee minimum contact wear and long life. Furthermore, the vacuum prevents their oxidation and contamination.

Operating mechanism

The low speed of the contacts, together with the reduced run and low mass, limit the energy required for the operation and therefore guarantee extremely limited wear of the system. The circuitbreaker therefore only requires limited maintenance.
The VD4 circuit-breakers use a mechanical operating mechanism, with stored energy and free trip. These characteristics allow opening and closing operations independent of the operator.

The structure

The operating mechanism and the poles are fixed to a metal frame which is also the support for the fixed version of the circuit-breaker. The compact structure ensures sturdiness and mechanical reliability.
Apart from the isolating contacts and the cord with plug for connection of the auxiliary circuits, the withdrawable version is completed with the truck for racking it into and out of the switchgear or enclosure with the door closed.

- Vacuum interruption technique
- Vacuum contacts protected against oxidation and contamination
- Vacuum interrupter embedded in the resin poles
■ Interrupter protected against shocks, dust and humidity
- Operation under different climatic conditions
- Limited switching energy
- Stored energy operating mechanism with anti-pumping device supplied as standard
Simple customisation with a complete range of accessories
- Fixed and withdrawable version

Compact dimensions
Sealed-for-life poles

- Sturdiness and reliability
- Limited maintenance
- Circuit-breaker racking in and racking out with door closed
- Incorrect and hazardous operations are prevented thanks to special locks in the operating mechanism and in the truck
High environmental compatibility

Vacuum interrupter embedded in resin pole

[^0]
DESCRIPTION

Quenching principle of ABB interrupters

In a vacuum interrupter, the electric arc starts at the moment of contact separation and is maintained until zero current and can be influenced by magnetic fields.

Vacuum arc - diffuse or contracted

Following contact separation, single melting points form over the entire surface of the cathode, producing metal vapours which support the arc.
The diffuse vacuum arc is characterised by expansion over the contact surface and by an even distribution of thermal stress on the contact surfaces.
At the rated current of the vacuum interrupter, the electric arc is always of the diffuse type. Contact erosion is very limited and the number of current interruptions very high.
As the interrupted current value increases (above the rated value), the electric arc tends to be transformed from the diffuse into the contracted type, due to the Hall effect.
Starting at the anode, the arc contracts and as the current rises further it tends to become sharply defined. Near the area involved there is an increase in temperature with consequent thermal stress on the contact.
To prevent overheating and erosion of the contacts, the arc is kept rotating. With arc rotation it becomes similar to a moving conductor which the current passes through

The spiral geometry of ABB vacuum interrupter contacts
The special geometry of the spiral contacts generates a radial magnetic field in all areas of the arc column, concentrated over the contact circumferences.
An electromagnetic force is self-generated and this acts tangentially, causing rapid arc rotation around the contact axis.
This means the arc is forced to rotate and to involve a wider surface than that of a fixed contracted arc.
Apart from minimising thermal stress on the contacts, all this makes contact erosion negligible and, above all, allows the interruption process to be controlled even with very high short-circuits.
ABB vacuum interrupters are zero-current interrupters and are free of any re-striking. Rapid reduction in the current charge and rapid condensation of the metal vapours simultaneously with the zero current, allows maximum dielectric strength to be restored between the interrupter contacts within microseconds.

Versions available

The VD4 circuit-breakers are available in the fixed and withdrawable version with front operating mechanism.
The withdrawable version is available for UniGear ZS1/ZS3.2 and ZS8. 4 type switchgear, PowerCube and Powerbloc modules.

Fields of application

The VD4 circuit-breakers are used in power distribution for control and protection of cables, overhead lines, transformer and distribution substations, motors, transformers, generators and capacitor banks.

Standards and approvals

The VD4 circuit-breakers comply with the IEC 62271100, VDE 0671 part 100, CEI 17-1 file 1375
Standards and with those of the major industrialised countries.
The VD4 circuit-breakers have undergone the tests indicated below and guarantee the safety and reliability of the apparatus in service in any installation.

- Type tests: temperature rise, withstand insulation at power frequency, withstand insulation at lightning impulse, short-time and peak withstand current, mechanical life, short-circuit current making and breaking capacity, and no-load cable interruption.

Schematic diagram of the transition from a diffuse arc to a contracted arc in a vacuum interrupter.

Development of current and voltage trends during a single phase vacuum interruption process.

Radial magnetic field contact arrangement with a rotating vacuum arc.

- Individual tests: insulation of the main circuits with voltage at power frequency, auxiliary circuit and operating mechanism insulation, measurement of the main circuit resistance, mechanical and electrical operation.

Service safety

Thanks to the complete range of mechanical and electrical locks, it is possible to construct safe distribution switchgear with the VD4 circuitbreakers

The locking devices have been studied to prevent incorrect operations and to inspect the installations whilst guaranteeing maximum operator safety.

DESCRIPTION

Rated Voltage ${ }^{1)}$	kV	12			
Rated frequency	Hz	50-60			
Rated normal current	A	$630 . . .4000^{21}$			
Rated short-circuit breaking current (symm.)	kA	$16 . .31 .5$	40	50	63
Rated short-circuit making current	kA	$40 . . .80$	100	125^{3}	158
Rated duration of short-circuit	s	3	3	3	3
Fixed / withdrawable Version		■ 1■	■ - \square	$\square 1 \square$	■ -
Max. overall dimensions (fixed Version)	p (mm) H (mm) a (mm) b (mm) c (mm)	$\begin{gathered} 150-275 \\ 205-310 \\ 450-700 \\ 424 \\ 461-599^{5} \end{gathered}$	$\begin{gathered} 210-275 \\ 310 \\ 600-750 \\ 424^{7)} \\ 599^{5(7)} \end{gathered}$	$\begin{gathered} 210-275 \\ 310 \\ 600-750 \\ 459 \\ 608^{77} \end{gathered}$	$\begin{aligned} & 275 \\ & 310 \\ & 750 \\ & 459 \\ & 677 \end{aligned}$
Weight	kg	73-105	94-180	147-260	260
Embedded Pole		\square	\square	\square	
Assembled Pole					\square

1) Test voltage according to DIN VDE 0670, - part 1000, list 2
2) Circuit-breaker with heat sink 616 mm (2500 A)
3) 4000 A with forced cooling
4) Withdrawable Version
5) Higher values on request
6) Circuit-breaker with heat sink 636 mm (3150 A)
7) 360 mm for fixed, 280 mm for withdrawable Version
8) 3150 A with assembled poles

For further information on the circuit-breakers with ratings $12 . . .24 \mathrm{kV}$ •

630 ... 4000 A • 16 ... 50 kA , see separate Technical Catalogue 521-01 E.

DESCRIPTION

Accessories

The VD4 circuit-breakers have a complete range of accessories to satisfy all installation requirements. The operating mechanism has a standardised range of accessories and spare parts which are easy to identify and order.
The accessories are installed conveniently from the front of the circuit-breaker. Electrical connection is carried out with plug-socket connectors.
Use, maintenance and service of the apparatus are simple and require limited use of resources.

Operating mechanism

The operating mechanism is of the stored-energy spring type and acts on the three breaker poles. The necessary operating energy is stored ready for activation by charging the spring energy store. The stored-energy spring mechanism essentially consists of drum containing the spiral spring, the charging system, the latching and operating mechanism and the linkages which transmit the force to the breaker poles. In addition, there are supplementary components such as the charging motor, releases, auxiliary switches and the controls and instruments located on the front of the mechanism enclosure.
The operating mechanism is fundamentally suitable for auto-reclosing and, due to the short charging times, also for multi-shot auto-reclosing.
The generator breaker have a built-in mechanical delay system with which the opening time is prolonged by approx. 30 ms .
In the basic version of the circuit-breaker, the spring energy store is charged manually. The operating mechanism can optionally be fitted with a charging motor.

- Very compact dimensions
- Fixed and withdrawable versions
- Stored energy operating mechanism
- Embedded pole technology
- Circuit-breaker racking in/out with door closed
- Safety locks to prevent incorrect operations
- Excellent environmental compatibility
- High reliability

The basic version of the stored-energy spring mechanism is fitted with the following auxiliary equipment:

[^1]The following additional equipment can be installed:
9 Blocking magnet -Y1 (-RL1) with auxiliary switch 9a -S2 (-BL1)
10 Shunt release ON -Y3 (-MC)
11 Second shunt release OFF -Y9 (-MO2)
12 Undervoltage release -Y4 (-MU)
13 Indirect overcurrent release -Y7 (-MO3)
14 Five-pole auxiliary switches -S3 (-BB1) and -S5 (-BB3)
15 Charging motor -M0 (-MS)
16 Five-pole auxiliary switch -S1 (-BS1) to switch the charging motor.

DESCRIPTION

Technical documentation

To go into technical and application aspects of the VD4 circuit-breakers in depth, ask for the following publications:

- Powerbloc	Code GCEA670498P0102
- UniGear Switchgear	Code 1VCP000138

Quality System

Complies with ISO 9001 Standards, certified by an independent organisation.

Test Laboratory

Complies with UNI CEI EN ISO/IEC 17025
Standards, accredited by an independent organisation.

Environmental Management System

Complies with ISO 14001 Standards, certified by an independent organisation.

Health and Safety Management System

Complies with OHSAS 18001 Standards, certified by an independent organisation.

General characteristics of fixed circuit-breakers 12 kV	16
Types of fixed version circuit-breakers available 12 kV	17
General charactristics of fixed circuit-breakers $36 / 40.5 \mathrm{kV}$	18
Types of fixed circuit-breakers $36 / 40.5 \mathrm{kV}$	19
General characteristics of fixed circuit-breakers $36 / 40.5 \mathrm{kV}$ for UniGear Types ZS3.2 and Powerbloc	20
Types of withdrawable circuit-breakers for the UniGear Types ZS3.2 and Powerbloc	21
Optional accessories	22

CIRCUIT-BREAKER SELECTION AND ORDERING

General characteristics of vacuum circuit-breakers for fixed installation

-	-	-
12	12	12
12	12	12
28	28	28
75	75	75
50-60	50-60	50-60
2500	3150	$4000{ }^{1)}$
63	63	63
63	63	63
158	158	158
		\square
\square	\square	-
≤ 45	≤ 45	≤ 45
≤ 15	≤ 15	≤ 15
≤ 60	≤ 60	≤ 60
approx. 60	approx. 60	approx. 60
677.5	677.5	677.5
750	750	750
459	459	459
275	275	275
265	265	265
GCEM370562	GCEM700116	GCEM700116
$-5 \ldots+40$	$-5 \ldots+40$	$-5 \ldots+40$
\square		
\square	-	-

VD4 fixed circuit-breaker without bottom and top terminals

Ur	Isc	Rated normal current ($40^{\circ} \mathrm{C}$) [A]	
kV	kA	$\begin{aligned} & H=677.5 \text { with heat sinking } \\ & D=459 \\ & u / I=310 \\ & I / g=237 \end{aligned}$	Circuit-breaker type
		$\begin{aligned} & p=275 \\ & W=750 \end{aligned}$	
12	63	1250	VD4 12.12.63 p275
	63	1600	VD4 12.16.63 p275
	63	2000	VD4 12.20.63 p275
	63	2500	VD4 12.25.63 p275
	63	3150	VD4 12.31.63 p275
	63	$4000{ }^{1}$)	VD4 12.40.63 p275 ${ }^{\text {1 }}$)

Notes
$\mathrm{H}=$ Circuit-breaker height.
W = Circuit-breaker width.
D $=$ Circuit-breaker width.
= Horizontal centre distance between poles.
$\mathrm{u} / \mathrm{l}=$ Distance between bottom and top terminal.
$\mathrm{l} / \mathrm{g}=$ Distance between bottom terminal and circuit-breaker resting surface.

CIRCUIT-BREAKER SELECTION AND ORDERING

General characteristics of vacuum circuit-breakers for fixed installation

Circuit-breaker		VD4 36					
Standards	IEC 62271-100	\square	\square	\square	\square	\square	\square
Rated voltage	Ur [kV]	36	36	36	36	36	36
Rated insulation voltage	Us [kV]	36	36	36	36	36	36
Rated power frequency withstand voltage at 50 Hz	Ud (1 min) [kV]	95	95	95	95	95	95
Rated lightning impulse withstand voltage	Up [kV]	185	185	185	185	185	185
Rated frequency	fr [Hz]	50-60	50-60	50-60	50-60	50-60	50-60
Rated normal current ($40^{\circ} \mathrm{C}$)	Ir [A]	630	1250	1600	2000	$2500{ }^{2)}$	$3150{ }^{1)}$
Rated short-circuit breaking current symmetrical	Isc [kA]	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \end{aligned}$
Rated short-time withstand current (3 s)	Ik [kA]	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \end{aligned}$
Rated short-circuit making current (peak)	Ip [kA]	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \end{aligned}$
Rated operating sequence	[O-3min-CO-3min-CO]	\square	\square	\square	■	\square	\square
Rated operating sequence with auto-reclosing	[0-0.3s-CO-3min-CO]	\square	\square	\square	\square	\square	\square
Opening time	[ms]	≤ 45					
Arcing time (at 50 Hz)	[ms]	≤ 15					
Total breaking time	[ms]	≤ 60					
Closing time	[ms]	approx. 60					
Maximum overall dimensions Pole centre distance	H [mm] W [mm] D [mm] p [mm]	$\begin{aligned} & 1575 \\ & 1000 \\ & 555 \\ & 360 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1000 \\ & 555 \\ & 360 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1000 \\ & 555 \\ & 360 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1000 \\ & 555 \\ & 360 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1000 \\ & 555 \\ & 360 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1000 \\ & 555 \end{aligned}$
Weight	[kg]	320	320	320	355	355	355
Dimension standardized table		GCEM700198	GCEM700198	GCEM700198	GCEM700198	GCEM700198	GCEM700198
Operating temperature	[${ }^{\circ} \mathrm{C}$]	$-5 \ldots+55$	$-5 \ldots+55$	-5 ... +55	-5 ... +55	$-5 \ldots+55$	-5 ... +55
Tropicalization	$\begin{array}{r} \text { IEC 60068-2-30 } \\ \text { IEC 721-2-1 } \end{array}$	\square	\square				
Electromagnetic compatibility	IEC 60694	\square	\square	\square	\square	\square	\square

VD4 fixed circuit-breaker without bottom and top terminals

Ur	Isc	Rated normal current ($40^{\circ} \mathrm{C}$) $[\mathrm{A}]$	
$\overline{\mathrm{kV}}$	kA	H = 1575	Circuit-breaker type
		$\begin{aligned} & D=452 \\ & u / I=328 \\ & 1 / g=900 \end{aligned}$	
		$\mathrm{p}=360$	
		W = 1000	
36	16	630	VD4 36.06.16 p360
	20	630	VD4 36.06.20 p360
	16	1250	VD4 36.12.16 p360
	20	1250	VD4 36.12.20 p360
	25	1250	VD4 36.12.25 p360
	31.5	1250	VD4 36.12.31 p360
	40	1250	VD4 36.12.40 p360
	25	1600	VD4 36.16.25 p360
	31.5	1600	VD4 36.16.31 p360
	40	1600	VD4 36.16.40 p360
	25	2000	VD4 36.20.25 p360
	31.5	2000	VD4 36.20.31 p360
	40	2000	VD4 36.20.40 p360
	25	2500	VD4 36.25.25 p360
	31.5	2500	VD4 36.25.31 p360
	40	2500	VD4 36.25.40 p360
	25	$3150{ }^{1)}$	VD4 36.31.25 p360
	31.5	$3150{ }^{\text {1) }}$	VD4 36.31.31 p360
40.5	16	630	VD4 40.06.16 p360
	20	630	VD4 40.06.20 p360
	16	1250	VD4 40.12.16 p360
	20	1250	VD4 40.12.20 p360
	25	1250	VD4 40.12.25 p360
	31.5	1250	VD4 40.12.31 p360
	40	1250	VD4 40.12.40 p360
	25	1600	VD4 40.16.25 p360
	31.5	1600	VD4 40.16.31 p360
	40	1600	VD4 40.16.40 p360
	25	2000	VD4 40.20.25 p360
	31.5	2000	VD4 40.20.31 p360
	40	2000	VD4 40.20.40 p360
	25	2500	VD4 40.25.25 p360
	31.5	2500	VD4 40.25.31 p360
	40	2500	VD4 40.25.40 p360
	25	$3150{ }^{\text {1) }}$	VD4 40.31.25 p360
	31.5	$3150{ }^{\text {1) }}$	VD4 40.31.31 p360

[^2]
CIRCUIT-BREAKER SELECTION AND ORDERING

General characteristics of vacuum circuit-breakers on withdrawable part 36 kV / 40.5 kV for UniGear ZS3.2 and Powerbloc

Circuit-breaker		VD4 36					
Standards	IEC 62271-100	\square	\square	\square	\square	\square	\square
Rated voltage	Ur [kV]	36	36	36	36	36	36
Rated insulation voltage	Us [kV]	36	36	36	36	36	36
Rated power frequency withstand voltage at 50 Hz	Ud (1 min) [kV]	95	95	95	95	95	95
Rated lightning impulse withstand voltage	Up [kV]	185	185	185	185	185	185
Rated frequency	fr [Hz]	50-60	50-60	50-60	50-60	50-60	50-60
Rated normal current ($40^{\circ} \mathrm{C}$)	Ir [A]	630	1250	1600	2000	2500	$3150{ }^{1)}$
Rated short-circuit breaking current symmetrical	Isc [kA]	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \end{aligned}$
Rated short-time withstand current (3 s)	Ik [kA]	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \end{aligned}$
Rated short-circuit making current (peak)	Ip [kA]	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \end{aligned}$
Rated operating sequence	[O-3min-CO-3min-CO]	\square	\square	■	\square	■	■
Rated operating sequence with auto-reclosing	[O-0.3s-CO-3min-CO]	\square	\square	\square	\square	\square	\square
Opening time	[ms]	≤ 45					
Arcing time (at 50 Hz)	[ms]	≤ 15					
Total breaking time	[ms]	≤ 60					
Closing time	[ms]	approx. 60					
Maximum overall dimensions	 H [mm] W [mm] D [mm]	$\begin{aligned} & 1575 \\ & 840 \\ & 685 \end{aligned}$	$\begin{aligned} & 1575 \\ & 840 \\ & 685 \end{aligned}$	$\begin{aligned} & 1575 \\ & 840 \\ & 685 \end{aligned}$	$\begin{aligned} & 1575 \\ & 840 \\ & 685 \end{aligned}$	$\begin{aligned} & 1575 \\ & 840 \\ & 685 \end{aligned}$	$\begin{aligned} & 1575 \\ & 840 \\ & 685 \end{aligned}$
Weight	[kg]	290	290	290	340	340	
Dimension standardized table		GCEM700198	GCEM700198	GCEM700198	GCEM700198	GCEM700198	GCEM700198
Operating temperature	[${ }^{\circ} \mathrm{C}$]	$-5 \ldots+55$	-5 ... +55	-5 ... +55	-5 ... +55	-5 ... +55	-5 ... +55
Tropicalization	$\begin{array}{r} \text { IEC 60068-2-30 } \\ \text { IEC 721-2-1 } \end{array}$	\square			\square		
Electromagnetic compatibility	IEC 60694	\square	\square	\square	\square	\square	\square

VD4 40.5					
\square	\square	\square	\square	-	\square
40.5	40.5	40.5	40.5	40.5	40.5
40.5	40.5	40.5	40.5	40.5	40.5
95	95	95	95	95	95
200	200	200	200	200	200
50-60	50-60	50-60	50-60	50-60	50-60
630	1250	1600	2000	2500	$3150{ }^{\text {1) }}$
16	16				
20	20				
	25	25	25	25	25
	31.5	31.5	31.5	31.5	31.5
	40	40	40	40	
16	16				
20	20				
	25	25	25	25	25
	31.5	31.5	31.5	31.5	31.5
	40	40	40	40	
40	40				
50	50				
	63	63	63	63	63
	80	80	80	80	80
	100	100	100	100	
\square	\square	\square	-	\square	\square
	\square	\square	\square	\square	\square
≤ 45					
≤ 15					
≤ 60					
approx. 60					
1575	1575	1575	1575	1575	1575
840	840	840	840	840	840
685	685	685	685	685	685
280	280	280	280	280	280
320	320	290	340		
GCEM700198	GCEM700198	GCEM700198	GCEM700198	GCEM700198	GCEM700198
$-5 \ldots+55$					
	-		-		\square
	■	\square	-		\square
	\square	\square	\square	\square	\square

Types of withdrawable circuit-breakers for the UniGear ZS3.2 and Powerbloc
Complete the circuit-breaker selected with the optional accessories indicated on the following pages.

Ur	Isc	Rated normal current ($40^{\circ} \mathrm{C}$) [A]		
kV	kA	$\begin{aligned} & \mathrm{H}=1575 \\ & \mathrm{D}=685 \\ & \mathrm{u} / \mathrm{I}=328 \\ & \mathrm{l} / \mathrm{g}=900 \end{aligned}$	Circuit-breaker type	
		$\begin{aligned} & p=280 \\ & W=840 \end{aligned}$		
36	16	630	VD4 36.06.16 p280	
	20	630	VD4 36.06.20 p280	
	16	1250	VD4 36.12.16 p280	
	20	1250	VD4 36.12.20 p280	
	25	1250	VD4 36.12.25 p280	
	31.5	1250	VD4 36.12.31 p280	
	40	1250	VD4 36.12.40 p280	
	25	1600	VD4 36.16.25 p280	
	31.5	1600	VD4 36.16.31 p280	
	40	1600	VD4 36.16.40 p280	
	25	2000	VD4 36.20.25 p280	
	31.5	2000	VD4 36.20.31 p280	
	40	2000	VD4 36.20.40 p280	
	25	2500	VD4 36.25.25 p280	
	31.5	2500	VD4 36.25.31 p280	
	40	2500	VD4 36.25.40 p280	
	25	3150	VD4 36.31.25 p280 ${ }^{1)}$	
	31.5	3150	VD4 36.31.31 $\mathrm{p} 280{ }^{\text {1) }}$	
40.5	16	630	VD4 40.06.16 p280	
	20	630	VD4 40.06.20 p280	
	16	1250	VD4 40.12.16 p280	
	20	1250	VD4 40.12.20 p280	
	25	1250	VD4 40.12.25 p280	
	31.5	1250	VD4 40.12.31 p280	
	40	1250	VD4 40.12.40 p280	
	25	1600	VD4 40.16.25 p280	
	31.5	1600	VD4 40.16.31 p280	
	40	1600	VD4 40.16.40 p280	
	25	2000	VD4 40.20.25 p280	
	31.5	2000	VD4 40.20.31 p280	
	40	2000	VD4 40.20.40 p280	
	25	2500	VD4 40.25.25 p280	
	31.5	2500	VD4 40.25.31 p280	
	40	2500	VD4 40.25.40 p280	
	25	3150	VD4 40.31.25 $\mathrm{p} 280{ }^{1)}$	
	31.5	3150	VD4 40.31.31 $\mathrm{p} 280{ }^{1)}$	
Notes				

CIRCUIT-BREAKER SELECTION AND ORDERING

Optional accessories

The accessories identified with the same number are alternative to each other.

1 Shunt release -MO1 (-Y2)

The shunt release OFF can be used to trip the circuit-breaker by remote control or by means of separately located protection relays. The first shunt release OFF is part of the standard equipment in the panel. Auxiliary switch -BB2 (-S4) is required for disconnection and is always included in the scope of supply.

Properties

$\mathrm{U}_{\mathrm{a}}: 24-30-48-60-110-125-220-240 \mathrm{~V}-$	
$\mathrm{U}_{\mathrm{a}}: 100-110-125-220-230-240 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$	
Service tolerances:	DC $70 \ldots 110 \% \mathrm{U}_{\mathrm{a}}$
	AC $85 \ldots 110 \% \mathrm{U}_{\mathrm{a}}$
Short time power consumption:	approx. DC $250 \mathrm{~W} ;$ approx. AC 250 VA
Maximum permissible duty time:	8 s

2 Additional shunt release -MO2 (-Y9)

The additional (second) shunt release OFF has the same function as -MO1. The second shunt release OFF is optional and, for disconnection, requires auxiliary switch -BB1 (-S3) which is included in the scope of supply.

Properties

$\mathrm{U}_{\mathrm{a}}: 24-30-48-60-110-125-220-240 \mathrm{~V}-$	
$\mathrm{U}_{\mathrm{a}}: 100-110-125-220-230-240 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$	
Service tolerances:	DC $70 \ldots 110 \% \mathrm{U}_{\mathrm{a}}$
	AC $85 \ldots 110 \% \mathrm{U}_{\mathrm{a}}$
Short time power consumption:	approx. DC $250 \mathrm{~W} ;$ approx. AC 250 VA
Maximum permissible duty time:	8 s

3 Shunt release ON -MC (-Y3)

The shunt release ON is used for remote controlled closing of the circuitbreaker. Auxiliary switch BS1(S1) enables the release when the spring is charged. Auxiliary switch BB1(S3) is used for disconnection. Both are necessary and are included in the scope of supply. The release is optional on breakers with manual operating mechanisms and included in the scope of supply for breakers with charging motors.
The scope of supply for the closing release also includes antipumping relay $-K 0$. The antipumping relay prevents repeated closing and opening cycles when, for example, the circuit-breaker is tripped by a protection relay in res-
 ponse to a primary circuit fault and a permanent electrical closing command is active at the same time. Closing of the circuit-breaker is then only enabled again when the active closing command has been interrupted.

Properties

U: 24-30-48-60-110-125-220-240 V-
$\frac{\mathrm{a}^{2}:}{}$ (100-110-125-220-230-240 V $\sim 50 \ldots 60 \mathrm{~Hz}$

Service tolerances:	DC; AC $70 \ldots 110$ \% U ${ }_{a}$
Short time power consumption:	approx. DC 250 W; approx. AC 250 VA

Maximum permissible duty time: 8 s

4 Blocking magnet -RL1 (-Y1) with auxiliary switch -BL1 (-S2)

When de-energized, the blocking magnet prevents closing of the circuitbreaker. A voltage must be applied to the blocking magnet for at least 100 ms in advance of the closing command. Auxiliary switch -BL1(-S2) is necessary and included in the scope of supply.

Properties

$\mathrm{U}_{\mathrm{a}}: 24-30-48-60-110-125-220-240 \mathrm{~V}-$	
$\mathrm{U}_{\mathrm{a}}: 100-110-125-220-230-240 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$	
Service tolerances:	DC; AC $85 \ldots 110 \% \mathrm{U}_{\mathrm{a}}$
Short time power consumption:	approx. DC $10 \mathrm{~W} ;$ approx. AC 10 VA
Maximum permissible duty time:	unlimited

CIRCUIT-BREAKER SELECTION AND ORDERING

5 Undervoltage release -MU (-Y4)

The undervoltage release switches the circuit-breaker off on failure of the corresponding supply voltage. It trips at the earliest as soon as the rated voltage falls below 70% of its rated level, and at the latest when the voltage is 30% of the rated level. The circuit-breaker can only be closed again when the voltage has risen to 85% of its rated level. The undervoltage release normally functions instantaneously, but can also be fitted with an electronic delay.

Properties of the undelayed version

$\mathrm{U}_{\mathrm{a}}: 24-30-48-60-110-125-220 \mathrm{~V}-$	
$\mathrm{U}_{\mathrm{a}}: 100-110-125-220 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$	
Power consumption:	approx. DC 10 W ; approx. AC 11 VA
Maximum service tolerance:	$110 \% \mathrm{U}_{\mathrm{a}}$
Voltage for closing readyness:	$>85 \% \mathrm{U}_{\mathrm{N}}$
Tripping voltage:	$30 \ldots 70 \% \mathrm{U}_{\mathrm{a}}$
Operate time:	immediate
Maximum permissible duty time:	any

Electronic delay system -KT (-RN3U)

If opening of the circuit-breaker during brief voltage fluctuations or interruptions is to be prevented, the undervoltage release can be connected to a time-delay undervoltage relay (-RN3U). The undervoltage relay is to be mounted outside the circuit-breaker and connected to the voltage to be monitored. The supply voltage is $100-110 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. For other supply voltages, a matching transformer is to be connected in series.
If the voltage transformer intended for supply of the -RN3U is installed in the outgoing feeder of the circuit-breaker, the undervoltage release must be supplied with a battery voltage of 110 V DC as a closing aid.

Properties

$\mathrm{U}_{\mathrm{a}}: 100-110 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$	
Power consumption:	approx. AC 10 VA
Service tolerance:	$\ldots 110 \% \mathrm{U}_{\mathrm{a}}$
Voltage for closing readyness:	$>70 \% \mathrm{U}_{\mathrm{a}}$
Tripping votage:	$<70 \% \mathrm{U}_{\mathrm{a}}$
a) Standard:	Operate time $0,5 \ldots 4 \mathrm{~s}$, adjustable in steps of $0,5 \mathrm{~s}$
b) When closing aid is used:	Operate time $0,5 \ldots 2 \mathrm{~s}$, adjustable in steps of $0,5 \mathrm{~s}$
	with adapted coil
Maximum permissible duty time:	any

6 Indirect overcurrent release -MO3 (-Y7)

The use of indirect overcurrent releases can be provided for in switchgear systems without a reliable auxiliary power supply. They receive their tripping current from the secondary winding of the main current transformer via an intermediate current transformer or an overvoltage time delay relay. In continuous operation, the secondary winding of the indirect overcurrent release is short-circuited by auxiliary switches.

Properties

Power consumption in continuous:	Connection to two phases 3,5 VA Connection to three phases 2 VA
Power consumption on tripping:	approx. 15 VA
Tripping readyness:	$70 \% \mathrm{I}_{\mathrm{N}}$
Power consumption of the inter-	
mediate current transformer at	
$\mathrm{I}_{\mathrm{N}}=5$ A and continuous operation	
(secondary winding short-circuited):	Winding A 1 VA Winding B 1 VA Winding C 1,5 VA

Power consumption of the intermediate current transformer at
$I_{N}=5 \mathrm{~A}$ and continuous operation (secondary winding open): Winding A 15 VA

Winding B 15 VA
Winding C 25 VA
Primary current of the intermediate
current transformer: $3 \times 5 \mathrm{~A}$

Secondary current of the intermediate current transformer: $\sim 0,4 \mathrm{~A}$

CIRCUIT-BREAKER SELECTION AND ORDERING

7 Auxiliary switch arrangement -BS1 -BB1 -BB2 -BB3 (-S1 -S3 -S4 -S5)

The circuit-breakers can be equipped with 5 -pole auxiliary switches for control, interlock and signaling purposes. Auxiliary switch -BB2(-S4) belongs to the basic equipment for all breakers. Auxiliary switches -BS1(-S1) and -BB1 (-S3) belong to the basic equipment for breakers with motorized operating mechanisms. Auxiliary switch -BB3(-S5) is optional. See also the circuit diagrams.

Properties

$\mathrm{U}_{\mathrm{a}}:$	$24 \ldots 250 \mathrm{~V}$
Test voltage:	$2,5 \mathrm{kV}$
Rated current:	$\mathrm{I}_{\mathrm{th} 2}=10 \mathrm{~A}$

8 Auxiliary switch for fault indication -BB4 (-S7)

Auxiliary switch-BB4(-S7), also known as a fleeting contact, belongs to the basic equipment for all circuit-breakers. It is used to signal that the breaker has tripped (fleeting signal 30 ms).

9 Contacts in the withdrawable assembly -BT1 -BT2 (-S8 -S9)

The auxiliary contacts signal whether the circuit-breaker is in the test position or service position. In intermediate positions, the breaker is mechanically blocked.

Properties

$\mathrm{U}_{\mathrm{a}}:$	$24 \ldots 250 \mathrm{~V}$
Test voltage:	$2,5 \mathrm{kV}$
Rated current:	$\mathrm{I}_{\text {th2 }}=10 \mathrm{~A}$

10 Motorized mechanism -MS (-M0)

On circuit-breakers with motorized mechanisms, the spiral spring is automatically charged by the electric motor installed in the mechanism enclosure after each closing operation.

Properties of Groschopp-Motor

$\mathrm{U}_{\mathrm{a}}:$	$24-30-48-60-110-125-220-240 \mathrm{~V}-$
$\mathrm{U}_{\mathrm{a}}:$	$110-240 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$
Charging time:	$\operatorname{max.~} 15 \mathrm{~s}$
Recharging time:	$\max .15 \mathrm{~s}$
Service tolerances:	$85 \ldots 110 \% \mathrm{U}_{\mathrm{a}}$
Power consumption during charging:	approx. DC $230 \ldots 260 \mathrm{~W} ;$ approx. AC 260 VA
Weight:	$1,5 \mathrm{~kg}$

Motor fuses:

Rated supply voltage V	Power consumption VA/W	Motor fuse (ABB-Stotz mcb) A	Charging time (maximum)
AC 110	260	1,6 S 281 UC-K	S

Motor fuses:

Rated supply voltage V	Power consumption	Motor fuse (ABB-Stotz mcb) VA/W	A
AC 110	150	1,6 S 281 UC-K	(maximing time S
220	150	0,75	15
240	170	0,75	15
DC 24	130	4,0 S 282 UC-K	15
48	130	3,00	15
60	130	2,00	15
110	140	$1,00 / 1,60^{*}$	15
125	160	$1,00 / 1,60^{*}$	10
220	140	0,75	15
240	150	0,75	15
* VD4 63 kA motor			15

CIRCUIT-BREAKER SELECTION AND ORDERING

11 Blocking magnet on the withdrawable part -RL2 (-Y0)
The blocking magnet on the withdrawable part prevents movement of the circuit-breaker without auxiliary voltage applied.

Properties
Properties

$U_{a}: 24-30-48-60-110-125-220-240 ~ V-~$	
$U_{a}: 100-110-125-220-230-240 \mathrm{~V} \sim 50 \ldots 60 \mathrm{~Hz}$	
Service tolerances:	DC; AC $85 \ldots 110 \% \mathrm{U}_{a}$
Power consumption:	approx. DC $10 \mathrm{~W} ;$ approx. AC 10 VA
Maximum permissible duty time:	unlimited

12 Motorized withdrawable assembly -MT (-M1)

The motorized withdrawable assembly permits electrical insertion and withdrawal of the circuit-breaker both locally and by teleservicing commands.

Properties

$\mathrm{U}_{\mathrm{a}}:$	$24-30-48-60-110-220 \mathrm{~V}-$
Insertion/withdrawal running time:	approx. 20 s
Weight:	approx. $0,8 \mathrm{~kg}$

14 ON lock switch (also available in opposite closing direction)

15 ON blanking cap

16 Dummy ON button

(

17 Dummy OFF button

CIRCUIT-BREAKER SELECTION AND ORDERING

18 Dummy ON and OFF buttons

19 Blocking magnet deactivator

When the blocking magnet deactivator is used, the circuit-breaker can be operated even without auxiliary voltage applied.

20 Cover with closing lock-out

21 Position signaling contact -BT3 (-S6) - non-standard!

The position signaling contact is used for circuit-breakers on withdrawable assemblies to prevent closing of the circuit-breaker by remote control during insertion.

Resistance to vibrations	32
Tropicalization	32
Altitude	32
Function of the spring energy store	33
Spare parts	34

Resistance to vibrations

VD4 circuit-breakers are unaffected by mechanically generated vibrations.
For the versions approved by the naval registers, please contact us.

Tropicalization

VD4 circuit-breakers are manufactured in compliance with the strictest regulations regarding use in hot-humid-saline climates.
All the most important metal components are treated against corrosive factors according to UNI 3564-65 Standards environmental class C. Galvanisation is carried out in accordance with UNI ISO 2081 Standards, classification code Fe/Zn 12, with a thickness of $12 \times 10^{-6} \mathrm{~m}$, protected by a conversion layer mainly consisting of chromates in compliance with the UNI ISO 4520 Standard. These construction characteristics mean that the whole VD4 series of circuit-breakers and its accessories comply with climate graph 8 of the IEC 60721-2-1 and IEC 60068-2-2 (Test B: Dry Heat / IEC 60068-2-30 (Test Bd: Damp Heat, cyclic) Standards.

Altitude

The insulating property of air decreases as the altitude increases, therefore this must always be taken into account for external insulation of the apparatus (the internal insulation of the interrupters does not undergo any variations as it is guaranteed by the vacuum).
The phenomenon must always be taken into consideration during the design stage of the insulating components of apparatus to be installed over 1000 m above sea level.
In this case a correction coefficient must be considered, which can be taken from the graph on the next page, built up on the basis of the indications in the IEC 60694 Standards.
The following example is a clear interpretation of the indications given above.

Graph for determining the Ka correction factor

 according to the altitudeH = altitude in metres;
$\mathbf{m}=$ value referred to power frequency and the lightning impulse withstand voltages and those between phase and phase.

Example

- Installation altitude 2000 m
- Operation at the rated voltage of 12 kV
- Withstand voltage at power frequency 28 kV rms
- Impulse withstand voltage 75 kVp
- Ka factor obtained from graph = 1.13.

Considering the above parameters, the apparatus will have to withstand the following values (under test and at zero altitude, i.e. at sea level):

- withstand voltage at power frequency equal to:

$$
28 \times 1.13=31.6 \mathrm{kVrms}
$$

- impulse withstand voltage equal to:

$$
75 \times 1.13=84.7 \mathrm{kVp} .
$$

From the above, it can be deduced that for installations at an altitude of 2000 m above sea level, with 12 kV service voltage, apparatus must be provided with 17.5 kV rated voltage, characterised by insulation levels at power frequency of 38 kVrms with 95 kVp impulse withstand voltage.

3

Function of the spring energy store
 Charging of the spring energy store

To provide the necessary motive energy, the spring energy store, either charged automatically by a charging motor or manually in a vertical pumping action with charging lever, depending on the equipment fitted to the circuit-breaker. The current charging condition is shown at charging condition indicator.
As a precondition for an auto-reclosing sequence, the operating mechanism is either (re-)charged after a closing operation automatically by the charging motor, or it requires (re-)charging by hand if the operating mechanism is of the manual type.

Closing procedure

The closing process is started by the mechanical ON push-button, or by activation of shunt release ON -Y3 (-MC1). The release mechanism then permits drive shaft to be rotated by the (previously) charged spiral spring. The moving contact in vacuum interrupter is moved until the contacts touch by cam disk and further kinematic links. In the further sequence of motion, spring arrangement is tensioned and the appropriate amount of contact force thus applied. The available overtravel is higher than the maximum value of contact erosion during lifetime of the interrupter. During the closing process, opening springs are simultaneously tensioned.

Opening procedure

The opening procedure is initiated by mechanical OFF push-button or by activation of one of releases -Y2 (-MO1), -Y4 (-MU), -Y7 (-MO3) or -Y9 (-MO2). Observe the notes in section 3.2.1 on control of the releases. Release mechanism then permits drive shaft to be turned further by the spring energy store, which is still sufficiently charged. Opening spring, which is thus released, moves contact into the open position at a defined speed.

Auto-reclosing sequence

An OFF-ON or OFF-ON-OFF auto-reclosing sequence is activated and checked by the protection system. It is necessary for the spiral spring in the operating mechanism to be in the (re-)charged condition, with the circuit-breaker in the closed position. The (re-)charging process is carried out automatically after closing of the breaker on breakers with motor charg-

ing mechanisms, but must be carried out manually on breakers without charging motors (or when the charging motor has broken down). Opening of the breaker is also possible during the (re-)charging process, but subsequent closing of the breaker is however blocked until the charging process has been completed.

Vacuum circuit-breaker for fixed installation and withdrawable parts 36 kV / 40.5 kV

Spare parts

- Block Magnet on truck with rectifier -TR5 (-V0)
- Closing block magnet with rectifier -TR4 (-V1)
- 1. Shunt release OFF with rectifier -TR1 (-V2)
- Closing release with rectifier -TR3 (-V3)
- Undervoltage release U< with rectifier -TR6 (-V4)
- Indirect overcurrent release
-2. Shunt release OFF with rectifier -TR2 (-V9)
- Charging motor
- Antipumping relay
- Auxiliary switch on mechanism
- Auxiliary switch on block magnet -RL1 (-Y1)
- Auxiliary switch on switch shaft
- Auxiliary switch on switch shaft
- Auxiliary switch on switch shaft
- Auxiliary switch at c.b.-unit
- Fleeting contact 35 ms for c.b. tripped indication
- Limit switch test position
- Limit switch service position

Ordering

For availability and to order spare parts, please contact our Service department, specifying the circuit-breaker serial number.

OVERALL DIMENSIONS

Vacuum circuit-breakers for fixed installation 12 kV

VD4

GCEM700116

Ur	12	kV		
$\mathbf{I r}$	3150	A		$4000 \mathrm{~A}^{11}$
:---				
63 kA				

Isc 63 kA

1) with fan cooling
2) for rated current

3150/4000 A

4

Vacuum circuit-breakers for fixed installation 36 kV / 40.5 kV

OVERALL DIMENSIONS

Vacuum circuit-breakers on withdrawable part 36 kV / 40.5 kV for UniGear ZS3.2 and Powerbloc

${ }^{1)}$ with assembled poles ${ }^{2}$)... 2500 A

ELECTRICAL CIRCUIT DIAGRAM

Basis diagram for Vacuum circuit-breaker for fixed installation	42
Wiring diagram for Vacuum circuit-breaker on withdrawable part	43
Graphical symbols for electrical diagrams	47

ELECTRICAL CIRCUIT DIAGRAM

Basis diagram for vacuum circuit-breaker for fixed installation

Wiring diagram for vacuum circuit-breaker on withdrawable part

Mode of presentation:

- Aux. switch -BS1 (-S1) shown for c.b.-mechanism discharged
- C.b.-unit in service position
- Control wiring plug 58 -pole
- Earthing switch mechanical interlock with c.b.-unit:
a) C.b.-unit in test position:
Earth. switch can be operated
b) Earth. switch open position:
C.b.-unit can be moved in the service position
*) Connection points when undervoltage release -MU (-Y4)
or indirect overcurrent release -MO3 (-Y7) are fittet:
-MU (-Y4) : 42-43
-MO3 (-Y7) : 42-43
-BS1 (-S1) Auxiliary switch on mechanism
$\begin{array}{lll}\text { SS1 } & \text { (-S1) } & \text { Auxiliary switch on mechanism } \\ & \\ \text { (-S2) } & \text { Auxiliary switch on block magnet -RL1 (-Y1) }\end{array}$
$\begin{array}{lll}\text { BB1 } & (- \text { S3 }) & \text { Auxiliary switch on switch shaft } \\ \text { BB2 } & (- \text { S4) } & \text { Auxiliary switch on switch shaft } \\ \text { BB3 } & (- \text { S5 }) & \text { Auxiliary switch on switch shaft }\end{array}$
$\begin{array}{lll}\text {-BB3 } & (-\mathrm{S}) & \text { Auxiliary switch on switch shaft } \\ \text {-BB4 } & (-\mathrm{S} 7) & \text { Fleeting contact } 35 \mathrm{~ms} \text { for c.b. tripped indication } \\ \text {-BT2 } & (-\mathrm{S} 8) & \text { Limit switch test position } \\ \text {-BT1 } & \text { (-S9) } & \text { Limit switch service position } \\ \text {-MT } & \text { (-M1) } & \text { Motor drive for drawout }\end{array}$
$\begin{array}{lll}\text {-RL1 } & (-\mathrm{Y} 1) & \text { Closing block magnet with rectifier -TR4 }(-\mathrm{V} 1) \\ \text {-MO1 } & (-\mathrm{Y} 2) & \text { 1. Shunt release OFF with rectifier -TR1 }(- \text { V2 }) \\ - \text { MC } & (-\mathrm{Y} 3) & \text { Closing release with rectifier -TR3 (-V3) } \\ \text {-MU } & (-\mathrm{Y} 4) & \text { Undervoltage release U< with rectifier -TR6 }(- \text { V4 }) \\ \text {-MO3 } & (-\mathrm{Y} 7) & \text { Indirect overcurrent release } \\ \text {-MO2 } & (-\mathrm{Y} 9) & \text { 2. Shunt release OFF with rectifier -TR2 }(-\mathrm{V} 9) \\ \text {-MS } & (-\mathrm{MO}) & \text { Charging motor } \\ \text {-KN } & (-\mathrm{K} 0) & \text { Antipumping relay }\end{array}$
Wiring diagram for VD4 vacuum circuit-breaker on motordriven withdrawable assembly.

5

Wiring diagram for VD4 vacuum circuit-breaker on manually moveable withdrawable assembly.

ELECTRICAL CIRCUIT DIAGRAM

Graphical symbols for electric diagrams (IEC 60617 and CEI 3-14 ... 3-26 Standards)

Contact us

ABB AG

Calor Emag Medium Voltage Products

Oberhausener Strasse 33	Petzower Strasse 8
40472 Ratingen	14542 Werder (Havel) OT Glindow
GERMANY	GERMANY
Phone: +492102 12-0	
Fax:	+492102 12-17 77
E-Mail:	powertech@de.abb.com

ABB S.p.A.
Power Products Division
Unità Operativa Sace-MV
Via Friuli, 4
I-24044 Dalmine
Tel.: +39 0356952111
Fax: +39 0356952874
E-Mail: sacetms.tipm@it.abb.com

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB AG.

Copyright® 2009 ABB
All rights reserved

[^0]: 1 Upper terminal
 7 Tie-rod spring fork
 2 Vacuum interrupter
 8 Tie-rod
 3 Resin housing
 9 Pole fixing
 4 Stem of moving contact

 10 Connection to operating
 5 Lower terminal mechanism
 6 Flexible connection

[^1]: 1 Shunt release OFF -Y2 (-MO1)
 2 Five-pole auxiliary switch -S4 (-BB2) for annunciation purposes
 3 Auxiliary switch -S7 (-BB4) for fault annunciation
 4 Mechanical ON push-button
 5 Mechanical OFF push-button
 6 Mechanical position indicator
 7 Charging condition indicator for the spring energy store
 8 Mechanical operating cycle counter

[^2]: ## Notes

 $\mathrm{H}=$ Circuit-breaker height.
 W = Circuit-breaker width.
 D $=$ Circuit-breaker depth.
 p = Horizontal centre
 distance between poles.
 $\mathrm{u} / \mathrm{l}=$ Distance between
 bottom and top terminal.
 $\mathrm{I} / \mathrm{g}=$ Distance between
 bottom terminal and circuit-breaker resting surface.

